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Random measurement error is ubiquitous in morphometric data, and it can cause serious sta
tistical problems. We stress that measurement error is a potential problem primarily when 
true phenotypic variation in shape is relatively small, such as in studies of intraspecific varia
tion in shape. A model for the partitioning of measurement error in landmark based morpho
metries is presented. The impact of measurement error can be reduced in a number of ways, 
depending on the methods used to collect, process and analyse data, and we give some prac
tical advice. We also recommend that repeated measures of all individuals are taken routine
ly in morphometric studies where measurement error may be a potential problem. This 
enables both a quantification, by estimating repeatabilities from analyses of variance, and a 
reduction, by averaging repeated measures, of the relative impact of measurement error. We 
perform an analysis of shape variation in a uniform sample of young perch (Percafluviati
lis), solely aimed at illustrating how different components of measurement error can be 
quantified, and demonstrate (a) that estimates of repeatability will only be informative of the 
error components that are actually repeated in each repeated measure, (b) that the relative 
impact of different components of measurement error can be partitioned and assessed by 
planned hierarchical repeated measurement protocols followed by nested analyses of varian
ce, (c) that measurement error is unevenly distributed among different shape variables and 
(d) that the relative magnitude of ME in a given shape variable can be reduced to an estima
ble extent by averaging several repeated measures. 

Key words: shape analysis, repeatability, repeated measures, measurement error, Percaflu
viatilis 

INTRODUCTION 

Whenever a value is assigned to a physical quantity, it is associated with 

uncertainty to some extent; an initially unknown magnitude of measurement error 

(henceforth, ME) is ubiquitous (FuLLER 1987, RABINOVICH 1995). Recent de

velopments in the methodology of data acquisition in morphometries has led to 

an increasing level of sophistication of our technical equipment (FINK 1990, MA

CLEOD 1990, MARCUS et al. 1996). However, every biometric measure, no mat-
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ter how sophisticated and/or ac~;urate our methods are, will be associated with 
ME. It is thus important to understand the effects that ME has on our data and our 
analyses. In order to do so, we need a framework to classify different sources of 
potential ME as well as strategies to "cope" with such error. These are the main 
objectives of the current contribution. 

Measurement error is defined as the deviation of the result of a measure
ment from the true value of the measured quantity. There are two main types of 
ME; random and systematic (RABINOVICH 1995). The effect of random ME is an 
increase in the variance of the estimated parameters, by introducing error which 
is randomly distributed with regards to the true value of the measured quantity. 
Systematic ME, in contrast, will cause systematic bias in the magnitude of the es- . 
timate, by introducing error which is non-randomly (i. e., systematically) dis
tributed with regards to the true value of the measured quantity. Most statistical 
models of parameter estimation and statistical inference incorporate ME (at least 
in the dependent variable) that is purely random, and many of the methods used 
to evaluate geometric morphometric data assume isotropic normal errors in land
mark locations (GOODALL & MARDIA 1993, MARDIA & DRYDEN 1994, 
BOOKSTEIN 1996a). 

Systematic and random ME entail quite different and distinct problems for 
the empirical investigators. First, the data that we are analysing for a given spe
cimen will only be an approximation of the true data. This will be a potential 
problem if systematic ME is present, since systematic deviations from the true 
values essentially mean that we then analysing shapes that are systematically 
false approximations of the true underlying shape (see for example Fig. 2). While 
there are sometimes methods for quantifying and compensating for systematic 
ME (RABINOVICH 1995), these are often case specific and complex. Second, ran
dom variations in the magnitude of error across specimens generates problems 
when statistical inferences are made (see below). Since systematic ME will occur 
only if the particular methods or instruments used for gathering data are flawed, 
while random ME is ubiquitous and often a potential problem, we focus strictly 
on the more general problem of random ME here. It is important to remember, 
however, that presence of systematic ME will violated the assumption of iso
tropic normal errors and may lead to deviations from multivariate normality in 
the tangent space (BOOKSTEIN 1991 1996a, GoODALL & MARDIA 1993, MAR
DIA & DRYDEN 1994, KENT & MARDIA 1997). 

WHY, AND WHEN, IS MEASUREMENT ERROR A PROBLEM? 

In a world of error-free measurements, all our data would be true. Unfortu
nately, our data are always contaminated with ME, and there is no reason to be-
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lieve a priori that geometric morphometries generally suffer less from problems 
with ME than does traditional morphometries. Two classes of problems can arise 
from ME. The first, and most general, problem with ME is that it increases our 
measure of total phenotypic variance in shape, by introducing a component of re
sidual "noise" to our data. Since statistical models are typically based on the rela
tionship between "explainable" and "residual" variation in morphology (ME is a 
component of the latter), ME dilutes trends and patterns in data by increasing re
sidual variance. Hence, while ME in morphometric data does not necessarily vi
olate any assumptions of statistical models, it is a potentially very serious prob
lem for the practitioner since it reduces the statistical power of our analyses by 
increasing the type II error rate (i.e., our inability to reject false null hypotheses) 
(FRANCIS & MATLIN 1986, COHEN 1988, BAILEY & BYRNES 1990, LEE 1990, 
YEZERINAC et al. 1992). The degree to which investigators need to worry about 
ME in this respect, will be inversely related to the relative magnitude of true bet
ween-individual variance in shape in the sample. Thus, comparative studies of 
shape variation in different species (or higher order taxa) or ontogenetic stages 
raFely suffer from serious problems with ME. In contrast, in studies where more 
subtle morphological variation in shape within species, or even populations, is 
being analysed, ME can be a serious problem. Since the development of the mor
phometric synthesis now has reached a mature stage (BOOKSTEIN 1996a, MAR
CUS et al. 1996) and since ecological morphology is currently receiving an in
creasing amount of attention (WAINWRIGHT & REILLY 1994), we anticipate that 
the amount of applications of the latter kind will increase. Thus, it is of great im
portance that we acknowledge ME, and create a framework for coping with prob
lems caused by it (HIMES 1989, MARKS et al. 1989, BAILEY and BYRNES 1990, 
LOUGHEED et al. 1991, YEZERINAC et al. 1992). 

Secondly, statistical models commonly make two critical assumptions with 
regards to ME, that may be violated more often than we would wish (FLEISS & 
SHROUT 1977). (a) It is generally assumed that the magnitude of a variable of in
terest and the error with which is measured are uncorrelated. The most classical 
violation of this assumption includes the commonly observed covariance bet
ween the true size of a trait and ME (PANKAKOSKI 1987, YEZERINAC et al. 
1992). This kind of association has been shown, e. g., to generate artifactual rela
tionships between within- and among-population variation across traits (see 
ROHLF et al. 1983) and to generate apparent patterns of decreasing variance in 
traits during ontogeny as individuals grow larger (see LEE 1990). (b) It is also 
generally assumed that, when more than one variable is measured, the errors 
across variables are uncorrelated. Violations of this assumption may be common 
when there are systematic components of ME involved, for example when more 
than one person is involved in recording data (LEE 1990, YEZERINAC et al. 1992, 
EASON et al. 1996). When the errors across variables are correlated, it will gener-
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ally be impossible to determine the extent to which an observed relationship bet
ween two variables reflects associations between the true scores and the extent to 
which it reflects associations between the errors (FLEISS & SHROUT 1977). Viol
ation of this assumption has been shown to generate serious problems in multi
variate procedures, such as discriminant analysis (JAMISON & ZEGURA 1974, 
FRANCIS & MATTLIN 1986, LEE 1982, 1990). 

THE ORIGIN OF MEASUREMENT ERROR IN LANDMARK DATA
IDENTIFYING AND CLASSIFYING SOURCES OF ERROR 

In order to develop strategies to deal with ME, we first need to identify its 
sources. A general partitioning of the components of total ME ( ~) is 

[ I ] 

where ~rn is methodological error, ~i is instrumental error and ~P is personal error 
(RABINOVICH 1995). A variety of methods ~md instruments can be employed to. 
capture morphometric data, and the sources of error will of course vary with the 
methods (see below). We focus below primarily on landmark data, i. e. two- or 
three-dimensional co-ordinates of specific points on a biological specimen, since 
this is the most common type of data in geometric morphometries (BOOKSTEIN 
1991, 1996a). For such data, the primary origin of error is erroneous locations of 
landmarks, but this error will then secondarily cascade through the subsequent 
geometric and statistical analyses to result in ME in shape variables. 

The accuracy and precision of recorded data will in theory depend partly on 
which methods are being used to gather landmark data. In order to recognise this, 
we first need to identify the sources of error in greater detail than the general par
titioning above. Such a systematic functional partitioning of principal sources of 
ME in landmark data is proposed in Fig. 1, and will be commented on below. 

1. Virtually all morphometric data are gathered from specimens that are 
prepared in one way or the other. What we call error due to specimen preparation 
occurs as result of slight variations in the way different specimens are prepared 
for data gathering. Examples of "preparations" include preservation of speci
mens, skeletonization, histological preparations, dyeing techniques and various 
forms of presentation/mounting strategies. The latter includes distortions in the
"state" in which specimens are represented (e. g., the degree of compression, ex
pansion or flexure), which may be a big source of error in specimens with soft 
tissue (LEE 1982, CARPENTER 1996). 

2. Structures which are truly three dimensional are often reduced to two 
dimensions in landmark based studies, by two dimensional views of, or cuts 
through, specimens. In such cases, dimensionality reduction error will arise as a 

Acta zoo/. hunx. 44, 1998 



! 

! 

MEASUREMENT ERROR IN GEOMETRIC MORPHOMETRICS 77 

result of lack of perfect orthogonality, between the major axes of the specimen 
(x,y) to that of the dimension which is being reduced (z), i.e. any variation across 
specimens in the orientation (alignment) when data is captured. A second, and in
dependent, form of dimensionality reduction error (which is systematic and will 

01 Specimen preparation 

l 
0 I Dimensionality reduction I 

l 
01 Special 

l 

G 
Optical distortion I 

misrepresentation when 
capturing specimen 

l 

G 
Optical distortion I 

misrepresentation when 
reproducing specimen 

l 

G 
Digital distortion l 

misrepresentation when 
capturing specimen 

l 

6 
Digital distortion I 

misrepresentation when 
reproducing specimen 

l 
C!JI Digitizing error II 

Fig. 1. A sequential partitioning of the main components of measurement error in landmark based 
morphometries. ~m denotes methodological error, ~i instrumental error and ~P personal error. See 
text for descriptions of each of the components 
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thus not be treated further here) .always occurs when whole specimens are viewed 
through a camera or microscope, by registration of false x,y co-ordinates of land
marks due to differences in their true location in the reduced z dimension (Fig. 2) 
(see BOOKSTEIN 1991, ROTH 1993, for discussions of dimensionality reduction). 
Dimensionality reduction error does not occur when three dimensional landmark 
points are collected directly (ROTH 1993, DEAN 1996). 

z 
Fig. 2. An illustration of a systematic measurement error in landmark data. This particular type of 
error arises as a result of dimensionality reduction, when three-dimensional objects are viewed 
from a single point (camera or microscope). In the illustrated case, a landmark situated on the sur
face of an oval shaped specimen is being measured. The error equals the difference between the 
landmark's true and measured location in the x-dimension ('{} = Xt- xm). This type of error in land
mark location will be systematic, and will occur whenever the true three dimensional location of a 
landmark is not in the two dimensional plane in which it is projected, unless it is located exactly 
along the z-axis (i.e., whenever z ;t. 0; provided that x,y ;t. 0,0) 
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3. When special methodological routines are employed to attain or prepare 
data prior to analysis, this may introduce special methodological error. An 
example of such a routine, which may introduce considerable error, is when parts 
of specimens are recorded separately and then merged into complete landmark 
configurations prior to analysis (see REIG 1998). 

4. Landmark data are typically acquired from images of specimens that 
have been captured in some way. What we call error due to optical distor
tion/misrepresentation when capturing specimens occurs as a result of imperfec
tions of the optical system (lenses) used when an image of the specimen is being 
captured and transformed into an analysable form. Examples include distortions 
due to the characteristics of the lenses in microscope and camera systems (when 
specimens are viewed directly, or are being transferred to a photographic film or 
a plane in a video camera). 

5. Images of specimens are often being reproduced prior to data acquisition. 
Error due to optical distortion/misrepresentation when reproducing specimens oc
curs when already captured images of specimens are being reproduced, and result 
from imperfections in the optical systems used (photo enlargers and slide projec
tors). Examples include enlargements of images when transferred from small 
photographic images (i. e. negatives or colour slides) to larger ones (photo
graphic prints or slide projections) prior to data recording. 

6. When a specimen is captured and transformed into digital form, error due 
to digital distortion/misrepresentation will occur. These types of errors are often 
complex, resulting from a series of potential imperfections in the digital system 
used, and they can be considerable (ARNQVIST, unpubl). Examples includes vari
ous properties of digital framegrabbers and scanners, but also the more proble-
matic and general sources of error due to image distortion resulting from non-
square pixels and the various algorithms used to compensate for this (see MA

~ CLEOD 1990). In general, digitising tablets suffer less from this component or 
error compared to other digital techniques (FINK 1990). 

7. To acquire landmarks from digital images, they are reproduced on video 
monitors or computer screens. Digital distortion/misrepresentation when repro
ducing specimens occurs as a result of imperfections in the system employed in 
reproducing the digital data to a visual form (MACLEOD 1990), but also from 
various manipulations aimed at "enhancing" the reproduced images whenever 
such software options are used (see ROHLF 1990). 

8. When the relative position of landmarks are localised and their co-ordi
nates are recorded, digitising error will occur as a result of imperfect and/or in
consistent localisation of landmarks. The magnitude of this personal component 
of error will vary greatly depending on, for example, the type of landmark 
(FRANCIS & MATLIN 1986, BOOKSTEIN 1991, LOUGHEED et al. 1991, DEMETER 
et at. 1996, REIG 1998), the accuracy of the equipment (DEAN 1996), the 
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quality/resolution of the image/projection and the personal characteristics of the 
investigator. The sequential and additive input of different components of ME 
can be illustrated by the following example. Numbers refers to components of 
error. An investigator wishes to assess potential shape differences due to habitat 
occupation in a fish species, Samples of fish are taken in the pelagic and benthic 
zones of a local lake. First, each fish is placed on a flat board in a certain position 
(1). A picture of each fish is taken (4) from a right angle to the board with a 
camera mounted on a tripod (2). Photographic prints are produced from the nega
tives (5), and these are then transformed into digital format by means of a digital 
scanner (6). Each picture is then reproduced and "enhanced" on a computer 
screen (7), and landmarks are entered with a pointing device (8). In this case, 
tota~ ME will equal the sum of all seven components of error. 

MINIMISING THE IMPACT OF MEASUREMENT ERROR 

Due to its negative effects on statistical evaluations of morphometric data, 
the impact of ME should, of course, be minimised. There are several things that 
should be kept in mind in order to do so. 

(A) The route between the actual specimen itself and the data should in 
principle be made as "short" as possible. Landmark data can be gathered in sev
eral ways (see ROHLF & BOOKSTEIN 1990, MARCUS et al. 1996), the most com
mon being: (a) landmarks located on the specimen itself, by placing the specimen 
directly on a digitising tablet, (b) landmarks located on a projection of the spe
cimen, by projecting the specimen onto a digitising tablet through a camera Iuci
da, (c) landmarks located on a projection of the specimen, by placing/projecting a 
photographic reproduction of the specimen (print or slide) onto a digitising tablet, 
(d) landmarks located on a digital image of the specimen, by capturing a digital 
representation of the specimen itself through a video-camera or other digital in
strument and projecting this onto a video screen, (e) landmarks located on a digi
tal image of the specimen, by capturing a digital representation of a photographic 
reproduction of the specimen through a video-camera, scanner or other digital in
strument and projecting this onto a computer screen. Since the total amount of 
ME in data is related to the number of methodological steps involved (Fig. l), 
steps should be avoided if possible. One important conclusion of this is that there 
might actually be a positive relationship between the technical sophistication of 
the methods of data collection and the relative amount of ME present! For 
example, given that everything else is equal, method (a) above is strongly prefer
able over method (e). 

(B) Methods of specimen preparation, presentation and digitising should be 
very thoroughly standardised across specimens. Error due to specimen prepara-
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tion is often a major source of ME (LEE 1982, CARPENTER 1996, and example 
below), so the importance of standardisation in this stage cannot be overesti
mated. Important implications are also that one and the same person should do all 
the specimen preparations as well as the actual digitising, and that the same 
equipment and instruments should be used throughout the data collection process 
within single studies ( cf., LEE 1990, YEZERINAC et al. 1992, EASON et al. 1996). 

(C) It has been suggested that certain instruments are more prone to error 
than others. For example, FINK (1990) recommended that optical slide projectors 
not be used to project slides of specimens, since these in general have lower opti
cal quality than do other optical instruments. Similarly, digitising tablets in 
general suffer less from digital distortion/misrepresentation and have higher pre
cision than do visual digital systems (i. e., image analysis systems) (MACLEOD 
1990). Thus, the choice of methodology will affect the amount of error present. 
The instrumental components of measurement error can be assessed, and some
times partly compensated for, by careful calibration of the equipment. This can 
be done by, for example, measuring a distance of precisely known length in var
ied positions and locations (MACLEOD 1990, BECERRA 1993, BECERRA et al. 
1996, DEMETER et al. 1996 ). 

(D) The amount of optical and digital distortion/misrepresentation error that 
burden data to some extent depends on the quality per se of the instruments and 
equipment used. Thus, the instruments and hardware used to gather data should 
be chosen carefully. This may be especially true for various digital components, 
such as different framegrabbers, scanners and digitising tablets which may vary a 
lot in quality, precision, accuracy and suitability for quantitative morphometries 
(FINK 1990, MACLEOD 1990, ROHLF 1990, BECERRA et al. 1993, KOHN et al. 
1995, DEAN 1996, GARCfA-VALDECASAS 1996). Apart from problems with dis
tortion/misrepresentation, the accuracy and resolution of both capturing equip
ment (e. g., digitising tablets) and reproducing equipment (e. g., computer moni
tors) will affect the amount of error present in data. 

(E) Using reduced data sets can sometimes decrease the relative amount of 
error. The impact of ME in a study will depend on the amount of true variation in 
shape relative to that due to ME. It may sometimes be desirable to use only are
stricted subset of all the landmarks collected for the final analysis and statistical 
evaluation, even if this potentially compromises the information content of a 
given data set. Choosing which landmarks to use will, however, often be a te
dious task. For example, while landmarks located closely together may poten
tially give valuable information of small scaled and localisable true shape vari
ation, they will also tend to duplicate information of more large scaled true shape 
variation and hence be redundant to some extent. Information on the absolute 
precision of landmark locations (ROTH 199~, REIG 1998) can be of great help in 
choosing landmarks, as can various superimposition methods (ROHLF & SLICE 
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1990, SLICE 1996) and multivarjate techniques (RUSAKOV 1996) aimed at find
ing regions of independent variation in data. 

(F) The most general, and often a very effective, way to reduce the amount 
of ME in geometric morphometries is to take repeated measures of each spe
cimen, and then base subsequent statistical inferences on the average shape 
scores for each individual (HIMES 1989, BAILEY & BYRNES 1990, RABINOVICH 
1995) (see below for a discussion of the number of repeated measures that should 
be taken for each individual specimen). Access to repeated measures also enables 
assessments of the absolute and relative magnitudes of measurement error (see 
below). 

ASSESSING THE IMPACT OF MEASUREMENT ERROR: 
TAKING REPEATED MEASURES 

Despite its potentially very serious impact, ME has very rarely been expli
citly dealt with in morphometric studies (BAILEY & BYRNES 1990). Since there 
are now established strategies with which to assess and reduce ME, the general 
awareness of the problem will hopefully increase. It is not possible to assess the 
amount of ME in a single measure of a single specimen. In contrast, whenever re
peated measures (2:: 2) of each of a series of specimens are available, it is possible 
to assess the magnitude of ME. When taking repeated measures, one should 
make a great effort to repeat all, or at least as many as possible, of the methodo
logical steps involved in data gathering (i. e., start from "scratch" with each re
peated measurement). The importance of this has not previously been recognised 
(cf., SLICE 1993a, DEMETER et al. 1996, but see LEE 1982). 

Sometimes this can not be done, as in cases when specimens are irrever
sibly prepared (e. g., skeletonizations, histological preparations) or when only a 
single reproduction of each specimen is available. It is important to realise that 
assessments of ME in such cases will not reflect total ME: it will only embody 
the components of error (Fig. 1) that are in fact repeated across repeated 
measurements, and will hence reflect only the minimum amount of error present 
(see example below). 

Depending on circumstances, thus, repeated measures will be informative 
of different components of error (RABINOVICH 1995). The reproducibility of 
measurements reflects the closeness of results of measurements performed under 
different conditions, with different methods and with different equipment. The 
reproducibility indicates the magnitude of both random and systematic ME, and 
is important when systematic errors are suspected to influence the results (LEE 
1990, YEZERINAC et al. 1992, DEMETER et al. 1996, EASON et al. 1996). The re
peatability of measurements reflects the closeness of results of measurements 
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performed under identical conditions, .with the same methods and with the same 
equipment. The repeatability is informative primarily of the amount of random 
error present in data (but see below), and is thus the focus of this section. There 
are two alternative, though not mutually exclusive, ways of assessing ME. 

Absolute measures of measurement error 

The most common method used so far to assess ME in geometric mor
phometries is to calculate absolute accuracy or precision. This is expressed either 
as an average distance from the mean, or a measure of dispersion such as the 
standard deviation, among a set of repeated measures of a linear distance or a 
particular landmark location (e. g., BECERRA et al. 1993, LOY et al. 1993, DEAN 
1996, DEMETER et al. 1996, REIG 1998). These measures (e. g., the root mean 
square- RMS) are absolute in the sense that they can be expressed in an absolute 
metric unit (e. g., mm), and can be very valuable and appropriate (a) when differ
ent data acquisition techniques, or equipment, are compared or (b) when select
ing which subset of landmarks, or distances, to include in morphometric analysis 
(BAILEY & BYRNES 1990, ROTH 1993, REIG 1998, but see KOHN et al. 1995). 

As mentioned above, the statistical problems generated by ME in empirical 
morphometries are related to the amount of true variance in the variables of inter
est. Because of this, absolute measures of ME are often inadequate to asses the 
impact of ME in a given study, and investigators are typically left to subjectively 
deem absolute ME as being either "problematic" or "negligible" (e. g., LOY et al. 
1993). Most would intuitively agree, for example, that an instrument with an ac
curacy of 0. 5 mm root mean square (RMS) would be perfectly relevant for a 
comparative study of cranial shape among primates, and equally inadequate for a 
study of intraspecific variation of cranial shape in a small rodent species (DEAN 
1996). But would this instrument be adequate for a comparison of the cranial 
shape of two closely related species of eagles? This problem is overcome by the 
use of relative measures of ME, since they provide quantitative measures of the 
relative magnitude of ME in shape variables for specific data sets. 

Relative measures of measurement error 

Several authors have stressed that a meaningful measure of the impact of 
ME in morphometric studies inust relate the amount of ME in a variable to true 
variation among individuals in the sample (HAGGARD 1958, FLEISS & SHROUT 
1977, PALMER & STROBECK 1986, SCHLUTER & SMITH 1986, HIMES 1989, 
MARKS et al. 1989, BAILEY & BYRNES 1990, LEE 1990, LOUGHEED et al. 1991, 
YEZERINAC et al. 1992, KOHN et al. 1995). This is done by simply performing a 
model II one-way analysis of variance· on-repeated measures from eactr·of -a 
series of individuals, with individual as a categorical factor. From such an ana-
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lysis, we attain a ratio R of the yariance due to differences among individuals to 
the total variance: 

[ 2] 

where S2 A is the among-individuals variance component and S2w is the within
individuals variance component. Variance components are calculated from the 
analysis of variance table as: 

[ 3 ] 
and 

fA = (MSamong - MSwithin) I n [ 4] 

where n is the number of repeated measures per individual (~ 2) (see LESSELS & 
BOAG 1987, for cases where the number of repeated measures varies between in
dividuals). This variance ratio has formally been given the somewhat misleading 
term "intraclass correlation coefficient", since it equals the Pearson correlation 
coefficient in the simplest case where only two repeated measures have been 
taken (SOKAL & ROHLF 1995). It has a long history as a measure of ME in the 
anthropometric literature (e. g., HAGGARD 1958, LORD & NOVICK 1968, FLEISS 
& SHROUT 1977) as well as in quantitative genetics (FALCONER 1960, BECKER 
1984, FALCONER & MACKAY 1996), and has more recently been "rediscovered" 
as a measure of the impact of ME in morphometries (BAILEY & BYRNES 1990, 
LOUGHEED et al. 1991, YEZERINAC et al. 1992). The variance ratio has been 
termed reliability in the first, repeatability in the second, and %ME in the third 
discipline. We suggest that the term repeatability is maintained for the use of R in 
morphometries, to agree with its frequent use in other domains of evolutionary 
biology. 

The most attractive characteristic of the repeatability is that it, in contrast to 
absolute measures, directly relates the magnitude of ME in a particular variable 
to the magnitude of true morphological variation. Repeatability parameterises the 
proportion of variance due to true variation between individuals, and ranges bet
ween 0 and 1; in the former case all variance is attributable to variance within in
dividuals (i. e., 100% ME), and in the latter all variance is found between indi
viduals (i. e., 0% ME). For the empiricist interested in statistical inferences, it is 
thus a direct and adequate measure of the relative impact of ME for a given vari
able in a specific sample. 

As mentioned above, the relative magnitude of ME in a given variable de
creases when multiple scores of each individual is averaged. The relationship bet
ween number of repeated measures per individual, n, and the repeatability after 
averaging the n measures, Rn, is 

R _ nR 
n-l+(n-l)R [5] 

Acta zoo/. hung. 44, 1998 



c 

• 

• 

• 

MEASUREMENT ERROR IN GEOMETRIC MORPHOMETRICS 85 

where R is the estimated repeatability pf single measures (eq. [2] above) (FLEISS 
& SHROUT 1977, HIMES 1989, ARNOLD 1994, FALCONER & MACKAY 1996). In 
general, the lower the repeatability is of a variable, the more can be gained by 
averaging repeated measures (Fig. 3). The number of repeate:d measures necess
ary to achieve a desired level of repeatability after averaging is given by 

n= 
Rn(l-R) 

R(1-Rn) [ 6 1 

These relationships are derived from the Spearman-Brown prophesy formu
la (FLEISS & SHROUT 1977, HIMES 1989), and can be very helpful when deciding 
how many repeated measures one should take from each individual. 

A STRATEGY TO COPE WITH MEASUREMENT ERROR 
IN GEOMETRIC MORPHOMETRICS 

It is important to stress, again, that the problem with ME in empirical 
studies is a relative one. In some cases, the relative impact of ME can be safely 

0.8 

0.6 
:" 

. . . . . . 0.4 ....... : .......... ~ .......... ~ .......... ~ ........... : .......... : .. ,. ....... : .......... : ..... / .. .. 
. . . . 
: : : : . . ' . 
• • 0 • . . . . . . . . . . . . . . . . 
• 0 • • . . . . . . . . . . . . 

0.2 . . . . 

1 2 3 4 5 6 7 8 9 10 

Number of measurements (n) 
Fig. 3. Estimates of the repeatability that results from averaging several repeated measures (Rn) as a 
function of the number of repeated measures taken on each individual, for four different values of 
single measure repeatability (R = 0.3, 0.5, 0.7 and 0.9) (see eq. [5]). This illustrates that the relative 
proportion of true between-individual variation in a variable can be dramatically increased by aver
aging several repeated measures 
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assumed a priori to be very lm~, such as when the method of data acquisition is 
known to be very accurate and the magnitude of true between-individual vari
ation in shape is known to be very large. However, in cases where this can not be 
safely assumed, such as in many studies of intraspecific variation, the quality of a 
study increases significantly when repeated measures are taken (BAILEY & BYR
NES 1990). As mentioned above, the benefits of taking repeated measures are 
two-fold. First, it enables assessments of the relative magnitude of ME in vaii.ous 
variables in the sample, by making the estimation of repeatabilities possible (eq. 
[2]). Second, it increases the statistical power (COHEN 1988), by decreasing the 
impact of ME to an estimable degree (eq. [5]) when averages of repeated 
measures for each individual are used for inferential statistical evaluation. 

If possible, we recommend that repeated measures are taken routinely for 
all individuals in the sample, but repeated measures of a subset of all individuals 
included at least enables estimation of repeatabilities. With regards to the number 
of repeated measures that should be taken on each individual, we refer to equa
tion [6]. It should be mentioned, however, that it is rarely worth while taking 
more than four repeated measures (HIMES 1989, FALCONER & MACKAY 1996), 
unless single measure repeatability is very low (Fig. 3) or one is interested in a 
further partitioning of ME (see below). If the total number of measurements is 
logistically constrained, for example if each measure is "costly", a trade-off bet
ween the number of individuals measured and the number of repeated measures 
per individual may occur. BAILEY & BYRNES (1990) gives some valuable gui
delines as to how such trade-offs are optimised. In general, increasing the number 
of individuals measured (if possible), rather than the number of measures per in
dividuals, will often be the preferred strategy. 

When repeated measures of individuals (multiple repeated landmark con
figurations per individual) are present one can either (1) use average landmark 
co-ordinates (e. g., means produced by GLS) for each individual for all further 
analytical purposes, or one can (2) use all repeated measures of all individuals in 
the morphometric analysis and then calculate repeatability of the shape variables. 
In the latter case, subsequent statistical inferences (e. g., various tests of shape 
differences between groups) can then be based on average shape (e. g., mean par
tial warp or relative warp score) for each specimen. While the former strategy 
does increase the quality of the data, we suggest that the latter strategy is most 
useful for morphometric analyses (see also the example below). The primary ad
vantage of method (2) over (1) is a higher biological and statistical direct relev
ance of the repeatability estimates. While it may be possible in theory to under
stand how ME in single landmarks affects the relative magnitude of ME in cer
tain multivariate shape variables (see GOODALL & MARDIA 1993, MARDIA & 
DRYDEN 1994, DRYDEN et al. 1997, KENT & MARDIA 1997, and references 
therein), the link between the precision or repeatability of a given landmark loca-

Acta zoot. hung. 44, 1998 

: 

" 



• 

• 

" 

MEASUREMENT ERROR IN GEOMETRIC MORPHOMETRieS 87 
., : 

c 

tion and the repeatability of multivariat~ shape variables is typically very obscure 
for the empiricist. For example, it is not easy to assess and compare the relative 
impact of ME in a set of multivariate shape variables given that we have informa
tion of the precision of the landmark locations on which the analysis is based. In 
contrast, method (2) generates direct estimates of the relative impact of ME for 
various components of shape space, by providing repeatability estimates of the 
multivariate shape variables. This is very important for two reasons. First, statis
tical inferences in morphometric studies are typically based on shape variables 
rather than landmark locations per se. Second, biological inferences are made by 
visualising multivariate shape components. We believe that it is critical to assess 
the impact of ME in a given study by evaluating the variables on which we base 
our inferences. For example, the relative magnitude of ME in different multivari
ate shape variables typically vary tremendously, sometimes in non-intuitive ways 
(LOUGHEED eta/. 1991, ARNQVIST eta/. 1997, ARNQVIST & THORNHILL 1998, 
and below). If the investigator is to make inferences (statistical and biological) of 
differences in shape between groups of individuals, information on the relative 
magnitudes of ME in the shape variables in the sample is key. This also allows 
exclusion of shape dimensions gravely affected by ME from further analysis, and 
can hence decrease the impact of ME in the study as a whole (BAILEY & BYRNES 
1990). 

In some cases, one may be interested in partitioning the variance in a given 
variable beyond the within- and between-individual components discussed so far 
(cf. eq. [2]). This will be the case, for example, if one wishes to assess the 
relative magnitude of different components of ME in relation to between-individ
ual variation. This can be made by a strategically planned hierarchical repeated 
measures protocol, where repetition is done on several different levels that corre
spond to different sources of error (see Fig. 4). This type of measurement proto
col requires a slightly more complex analytical design; it is analysed by extrac
ting variance components from nested analyses of variance (SOKAL & ROHLF 
1995), where each level of replication is nested in the ones above (see KOHN et 
al. 1995, and below for examples, and SLICE 1993a, for an analogous case). With 
this design, total ME can be divided into its components. 

Finally, one topic that is worth special attention is the measurement of 
asymmetry, especially fluctuating asymmetry, in bilateral symmetrical traits. This 
is an area where geometric morphometries can potentially be a very valuable tool 
(see AUFFRAY eta!. 1996, ARNQVIST eta!. 1997, SMITH et al. 1997). In these 
cases, it is absolutely critical to estimate the relative impact of ME (e. g., repeata
bility) in ones measures of asymmetry in shape, since ME alone will produce ap
parent fluctuating asymmetry (see, for example, PALMER & STROBECK 1986, 
1997, SWADDLE eta!. 1994, FIELD eta!. 1995, HUTCHISON & CHEVERUD 1995, 
MERILA & BJORKLUND 1995, BJORKLUND & MERILA 1997, RABITSCH 1997). 
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Fig. 4. An example of a hierarchical repeated measures protocol. In this example, each of the levels 
2 and 3 are repeated twice and !eve{ 4 three times. Each individual is, hence, measured twelve 
times, and each of the levels 2 - 4 correspond to a certain component of measurement error. For 
example, level 2 may represent specimen preparation, level 3 specimen capture and reproduction, 
and level 4 the different measures. Relative measurement error could then be partitioned into com
ponents due to methodological, instrumental, and personal (digitising) measurement error, respec
tively 

LEVELl INDIVIDUAL 

LEVEL2 Repetition 1 Repetition 2 

1\ 1\ 
LEVEL3 Repetition 1 Repetition 2 Repetition 1 Repetition 2 

;i;i ;i;i 
LEVEL4 Ml M2 M3 Ml M2 M3 Ml M2 M3 Ml M2 M3 

To discuss the merits of various methods of assessing the relative magnitude of 
ME in measures of fluctuating asymmetry is beyond the scope of the current 
presentation, but it seems that a mixed model analysis of variance approach is the 
preferred method (see PALMER & STROBECK 1986, MERILA & BJORKLUND 
1995, for details). 

AN EXAMPLE: QUANTIFYING 
MEASUREMENT ERROR OF SHAPE IN YOUNG PERCH 

To illustrate some of the points made in the current contribution, we here 
present an analysis of the impact of ME in measures of shape variation in young 
fish (perch). We wish to stress that the purpose of this analysis is not a biological 
one, but exclusively confined to methodological issues relating to ME. We illus-
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trate four things: 1) that estimates of Jiepeatabilities depend on the error compo
nents that are actually repeated for each measure, 2) that the impact of different 
components of ME can be assessed by hierarchical repeated measurements and 
analyses, 3) that the relative magnitude of ME in a variable can be reduced by 
averaging several repeated measures, and 4) that ME is unevenly distributed 
among different multivariate shape variables. 

Materials and methods 

For the purposes of this study, a number of young of the year (0+) perch (Perciformes; Perea 
fluviatilis) were collected by means of electrofishing, in a lake situated in northern Sweden (Am
sele, Vasterbotten). Twenty of these individuals (3.5-4.5 em total body length) were fresh frozen, 
and later thawed and subjected to morphometric analysis. Landmarks were collected by viewing 
the fish directly in a dissecting microscope (Leica® MZ8), and projecting the image through a 
camera Iucida onto a digitising tablet (Summasketch® III). In total, 21 landmarks were collected 
for each repeated measure of each fish (see Fig. 5) by means of OS-DIGIT (SLICE 1994). We col
lected the repeated measures from each individual fish, in the following way. Each fish was posi
tioned (presented) under the microscope, and three repeated measures were entered for the 
presentation without altering the position of the fish. The fish was then removed from the micro
scope stage. This whole procedure was repeated three times for each individual, Hence, this proto
col yielded nine repeated "landmark maps" for each individual fish, hierarchically repeated as three 
repeated measures in each of three repeated presentations (3 x 3) (cf., Fig. 4). 

Morphometric analysis 

All sets of landmarks (N = 180) for all individuals were translated, scaled and rotated by 
generalised least-squares Procrustes fit using the GLS option in GRF-ND (SLICE 1993b), retaining 
the centroid size as a measure of size variation in the sample. The uniform components of shape 
space were then analysed according to BOOKSTEIN ( 1996c ). Finally, the non-uniform sub-space of 
shape was analysed with a thin-plate spline relative warp analysis (a= 0), using TPSRW (ROHLF 
1993). For each repeated measure, 23 variables were retained for analysis; standardised scores of 
the first 20 relative warps, the two uniform components and the centroid size (see Table 1). For 
each variable we performed a nested analysis of variance, from which we extracted variance com
ponent estimates (see SOKAL & ROHLF 1995) corresponding to differences (l) among individuals, 
(2) among presentations within individuals and (3) among repeated measures within presentations 
and individuals. These will correspond to variance due to (1) true differences between individuals, 
(2) methodological and instrumental error (varying across presentations) and (3) personal error, re
spectively. We also calculated explicit repeatabilities from one-way analysis of variance (see eq. [2] 

Fig. 5. Locations oflandmarks used in the perch data set 
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above) for all variables in two different ~ays. First, a subset of only three repeated measures for 
each individual fish, all from one and the same presentation (the first one), was used to estimate re
peatability (Rt) thus including only personal error. Second, all nine repeated measures from all 
three different presentations for each individual was used to estimate repeatability (R2), thus includ
ing both methodological, instrumental and personal error. In addition, we estimated the repeata
bility that would result from averaging the nine repeated measures, Rn, as 

9 R2 
Rn= 1 +8R2 

where R2 represent the estimate mentioned above (cf., eq. [5]). 

RESULTS AND DISCUSSION 

[ 7] 

We found our measure of size (centroid size) to be considerably less af
fected by ME than our multivariate measures of shape (Table 1), an expected pat
tern that should be very general (see also LOUGHEED et al. 1991, ARNQVIST & 
THORNHILL 1998). The proportion of measurement error ranged between ap
proximately 15-30% for the uniform shape components, 10-40% for relative 
warps #1-10, and 35-80% for relative warps #11-20 (see R2 in Table 1). One 
should bear in mind, however, that these figures are inflated relative to most 
"real" data sets. In this analysis, we were deliberately trying to keep between-in
dividual variation in shape low (we used only a limited number of similar-sized 
individuals that were collected at the same locality and at the same occasion), in 
order to elevate the overall relative impact of ME. 

As mentioned above, it is sometimes impossible to repeat all the methodo
logical steps in one's repeated measures. Examples of such steps are when skele
tal parts have been skeletonised, histological preparations have been made, each 
specimen is only available as a single photographic/digital reproduction, or when 
specimens have been preserved in preservatives (LEE 1982, CARPENTER 1996). 
In all these cases, the specimens are prepared once and for all, and the method is 
irreversible and hence unrepeatable. In these cases, the repeatabilities will reflect 
primarily personal error (sp), and depending on circumstances possibly certain 
components of instrumental error (Si). However, since the methodological error 
(sm) is often a major component of ME, the estimated repeatabilities will repre
sent highly inflated estimates of the quality of ones data in such samples. Our 
analyses illustrate this in two ways. First, the repeatabilities of all shape scores 
were considerably higher when only personal error was accounted for (cf. R1 ver
sus R2 in Table 1 ). Second, variance due to personal error was in average about 
half that due to methodological and instrumental error (cf. 2nd versus 3rd vari
ance component in Table 1). The major source of methodological error in our 
case was undoubtedly slight variations in the exact positioning of the fish across 
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Table 1. Estimates of repeatability for a se.ri,es of morphometric variables in the perch data set. 
Given are also scaled variance component estimates for each trait, expressed in percent of the total 
variance. These three components estimate true phenotypic variance, variance due to methodologi-
cal and instrumental error (/;;m + /;;i) and variance due to personal error (/;;p), respectively. Numbers 
within brackets represent percentage of variance in shape explained by each relative warp. See text 
for further explanation 

Variable Repeatabilities Variance components 

Ria R2b R~c (1) (2) (3) 

among: Individuals Presentations Measures 

~ within: Individuals Presenta-
tions 

Centroid size 1.00 1.00 1.00 99.4 0.5 0.1 

• Uniform comp. 1 0.93 0.77 0.97 71.1 23.5 5.4 

Uniform comp. 2 0.97 0.86 0.98 82.4 14.8 2.7 

Relative warp I (30.6) 0.99 0.86 0.98 81.2 18.3 0.5 

Relative warp 2 (16.4) 0.98 0.88 0.98 84.4 12.9 2.6 

Relative warp 3 (10.7) 0.97 0.81 0.97 75.5 22.0 2.6 

Relative warp 4 (8.1) 0.94 0.77 0.97 70.7 24.5 4.8 

Relative warp 5 (6.9) 0.90 0.81 0.97 77.0 15.7 7.3 

Relative warp 6 (4.5) 0.93 0.77 0.97 72.3 20.6 7.1 

Relative warp 7 (4.0) 0.89 0.82 0.98 79.0 12.3 8.7 

Relative warp 8 (2.5) 0.90 0.86 0.98 85.2 5.6 9.2 

Relative warp 9 (2.3) 0.87 0.59 0.93 48.9 40.8 10.3 

Relative warp 10 (1.9) 0.85 0.63 0.94 54.3 33.3 12.5 
! Relative warp 11 (1.6) 0.86 0.56 0.92 48.1 34.9 17.0 

Relative warp 12 (1.4) 0.80 0.65 0.94 58.3 27.2 14.6 

• Relative warp 13 (1.2) 0.82 0.66 0.95 62.5 17.0 20.5 

Relative warp 14 (0.9) 0.79 0.41 0.86 27.6 50.2 22.2 

Relative warp 15 (0.8) 0.61 0.39 0.85 27.0 53.5 19.5 

Relative warp 16 (0.7) 0.70 0.19 0.67 5.4 51.8 42.9 

Relative warp 17 (0.7) 0.59 0.40 0.86 28.9 41.4 29.6 

Relative warp 18 (0.6) 0.58 0.40 0.86 30.6 42.5 26.9 

Relative warp 19 (0.5) 0.60 0.22 0.72 11.0 43.2 45.8 

Relative warp 20 (0.5) 0.66 0.21 0.70 3.8 62.3" 34.0 

presentations. Thus, our results illustrates the key importance of repeating all, or 
at least as many as possible, of the steps involved in the data gathering procedure. 
If thi~ is not done, the investigator must be aware that repeatabilities only give an 
upper bound of the true "quality" of the data. This is often unsatisfactory, espe-
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cially since the relative impact of different components of error is not necessarily 
correlated across different shape variables (see below). 

Our methodological exercise demonstrates how the relative impact of ME 
in different shape variables can be partitioned, quantified and understood by a 
strategically planned hierarchical repeated measures protocol, followed by nested 
analyses of variance. With our design, the variance component that is due to dif
ferences among individuals corresponds to the repeatability of ones shape 
measures (correlation coefficient between variance component 1 and Rz in Table . 
1, r = 0. 998). In empirical studies, where the purpose is to make biological and 
statistical inferences, further levels can of course be added to such nes!ed models 
(see SLICE 1993a, KOHN et al. 1995), including effect factors. In our case, for 
example, fish could have been sampled from different lakes, adding a variance 
component due to differences among lakes (variance among individuals would 
then be nested within a random lake factor). There is much to be gained by this 
type of analysis, since the potential for biological insight increases significantly 
by including ME in our statistical models (information on the relative magnitude 
of ME in different components of shape are available) rather than disregarding 
any variance that is due to error. 

This type of analysis also allows for statistical inferences to be based on 
average shape of each individual, which increases the statistical power of ones 
tests (reduces the type II statistical error rate; COHEN 1988). Our repeatabilities 
were in many cases dramatically improved when averaging the nine repeated 
measures, especially for variables with low repeatabilities ( cf. Rz versus Rn in 
Table 1). The overall relative proportion of ME decreased from almost 40% to 
less than 10% (average for all22 shape variables). Basing further statistical ana
lysis (for example, tests of differences between groups) on average shape of each 
individual would thus greatly improve the quality of the analysis. 

Our variance component analysis generated two further insights, with re
gards to the relative impact of ME in different components of shape space. First, 
and most importantly, the relative impact of ME generally increased with order 
among relative warps (Spearman rank correlations [rs] between relative warp 
order and variance components 1-3; -0.88, 0.78 and 0.98 respectively, P < 0.001 
in all cases). This pattern is expected since principal component analysis tend to 
selectively recover true structure from early axes, hence leaving later axes with 
relatively larger proportions of ME (GAUCH 1982, LOUGHEED et al. 1991). This 
was obvious in our example, where higher order relative warps were not only se
verely affected by ME but also explained a very low proportion of variance in 
shape (Table 1). Thus, there are several reasons for why principal components, in 
this case relative warps, should be interpreted with an increasing amount of cau
tion with their order. Second, within this general trend, the relative impact of dif
ferent components of ME was remarkably unevenly distributed among different 
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shape variables (see also LOUGHEED et al. 1991). Detailed information of this 
kind is especially helpful when interpr~ting negative findings, since some multi
variate shape variables can parameterize shape variation that is to a large extent 
due to ME (e. g., relative warps 16, 19 and 20 in Table 1; see also CARPENTER 

1996). Further, though the relative magnitudes of ME due to personal error on 
the one hand and methodological and instrumental error on the other were posi
tively correlated (Spearman rank correlation [r.,] between variance components 1 
and 2, 0.75, P < 0.001), it varied considerably among different shape variables (e. 
g., compare variance components 2 and 3 for relative warps 1 vs 8 and 9 vs 19). 

In conclusion, we hope that our contribution has shown that there are sev
eral reasons for increasing our awareness of the impact of ME in geometric mor
phometries. We do not in any way dispute the tremendous potential of the tools 
of the morphometric synthesis (ROHLF & MARCUS 1993, BOOKSTEIN 1996a, b, 
MARCUS et al. 1996), and hence do not wish to discourage anyone from using 
these methods. On the contrary, we hope to have shown that explicitly acknowl
edging the existence of ME is key in geometric morphometries, and that includ
ing quantifications of the impact of ME such as those demonstrated here will lead 
to much more powerful and insightful applications. 
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