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Sperm Competition Favors
Harmful Males in Seed Beetles
to elevated success in reproductive competition among
males. Under both hypotheses, therefore, sexual selection in
males on traits that cause harm is assumed to outweigh nega-
tive direct selection in males, because of lowered fecundity of
their mates, on the very same traits [3]. Currently, there is no
direct support for either of these hypotheses [3, 15, 16].

To test these hypotheses, we employed the seed beetle
Callosobruchus maculatus (Coleoptera, Bruchidae), a model
system for studies of sperm competition and sexual conflict
[7, 11, 15, 17–21]. Here, male genitalia are armed with conspic-
uous sclerotized spines that penetrate the wall of the female
copulatory duct during copulation, leaving prominent mela-
nized scars in these tissues [7, 11]. Females suffer costs as
a result of such injuries [7, 11, 18, 19] but males seem not to
benefit directly from the harm inflicted upon their mates [15].
Instead, harm to females has been suggested to be an indirect
side-effect of these spines [18]. We quantified (1) the length of
the genital spines, (2) the amount of harm caused to females
during mating, and (3) male sperm competition success in 13
different populations of C. maculatus.

Males from different populations were distinct with regards
to their genital morphology (Figure 1): the length of the genital
spines and the size of the area covered with spines differed
across populations, both in absolute terms (MANOVA of the
three genital variables: Wilk’s l = 0.591, F36,367 = 1.984, p <
0.001) and relative to male body size (MANCOVA: population;
Wilk’s l = 0.573, F36,364 = 2.101, p < 0.001, male body size;
Wilk’s l = 0.932, F3,123 = 2.991, p = 0.034). Further, the amount
of scarring to the copulatory duct that occurred in females
from our standard reference population was affected by the
population origin of their mate (Figure 1) (MANOVA of the
two scarring variables: Wilk’s l = 0.744, F24,334 = 2.217, p =
0.001). Although large females suffered less injury during
copulation (MANCOVA: female body size; Wilk’s l = 0.962,
F2,166 = 3.322, p = 0.038), the effect of population origin
of the male was even stronger when variation in female body
size was accounted for (population; Wilk’s l = 0.732,
F24,332 = 2.337, p < 0.001). Earlier studies of this species has
shown that male success in sperm competition varies across
populations [17, 20] and this was true also in our case (c2

12 =
23.12, p = 0.027), controlling for variance in P2 resulting from
the larval competitive environment of the male (c2

3 = 9.998,
p = 0.018) and the number of eggs laid by the female prior to
the second mating (c2

1 = 7.741, p = 0.005) (see Experimental
Procedures). Thus, males from the 13 populations were
distinct with regards to (1) their genital armature, (2) the
amount of injury and scarring they caused in females, and (3)
their sperm competition success.

Pattern of Covariation across Populations

Both hypotheses for the evolution of injurious traits make the
critical assumptions (1) that males with more injurious
morphological traits are at an advantage, directly or indirectly,
in reproductive competition between males and (2) that these
benefits are large enough to offset the costs to such males that
stem from harm caused to their mates [1]. Although males of
many taxa show traits that carry costs for females [1–3], no
previous study has identified an injurious male trait that is
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Summary

One of the most enigmatic observations in evolutionary

biology is the evolution of morphological or physiological
traits in one sex that physically injure members of the other

sex [1–3]. Such traits occur in a wide range of taxa [3] and
range from toxic ejaculate substances [4–6] to genital or

external spines that wound females during copulation [7–
11]. Current hypotheses for the adaptive evolution of such

injurious traits rest entirely on the assumption that they
are beneficial to their bearer by aiding in reproductive

competition [1, 3]. Here, we assess this key assumption in
seed beetles where genital spines in males physically injure

females. We demonstrate that male spine length is positively
correlated with harm to females during mating but also that

males with longer spines are more successful in sperm
competition. This is the first complete support for the

proposal that sexual selection by sperm competition can

favor morphological traits in males that inflict injury upon
females. However, our results suggest that harm to females

is a pleiotropic by-product, such that genital spines in males
elevate success in sperm competition by means other than

by causing harm.

Results and Discussion

Difference among Populations
Because males accrue fitness through females, a male that
bears a morphological trait that inflicts injury upon his mates
will himself suffer from the harm inflicted. For this simple
reason, understanding the adaptive evolution of injurious traits
in males is a challenge [1]. In theory, such traits may evolve by
two distinct routes [3]. First, if females show responses to
harm that directly benefit the harming male, there may be
direct selection on males to injure their mates [12–14] despite
the fact that harm per se carries costs for the harming male (the
‘‘adaptive harm hypothesis’’ [15]). Such female responses may
involve delaying remating, increasing sperm usage, or
increasing the short-term rate of offspring production [12–16],
and harming females is adaptive to males in the sense that
harm triggers the female response that benefits males.
Second, a trait that is beneficial to males in terms of intrasexual
reproductive competition may be injurious to females as
a negative pleiotropic side effect [1, 3] (the ‘‘pleiotropic harm
hypothesis’’ [15]). Here, harm to females is not causally related
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also associated with differential reproductive success [22] and
the strength of sexual selection on injurious traits is entirely
unknown. Direct empirical support is presently limited to
studies of physiological traits in Drosophila fruit flies. Civetta
and Clark [23] showed a correlation between male sperm
competition success and female postmating mortality in
a comparative study of chromosome-extracted lines, although
a male trait was not identified. By using knockdown mutant
lines, Wigby and Chapman [24] showed that a particular
male ejaculate accessory gland protein depresses female
fitness. Although this protein has phenotypic effects in females
that are likely to benefit males, its net effect on male reproduc-
tive success has not been documented [25].

Given that our populations differ, we adopted a comparative
approach and used the pattern of covariation of mean values
of these traits across populations to test three a priori predic-
tions. First, we predicted that males with longer genital spines
should cause more harm to females. This prediction was
tested in a conventional multiple regression model of the
area of the postcopulatory scars in the female copulatory
duct, with the three measures of male genital spinosity as
predictor variables. This model showed that the degree of
genital spine elaboration was positively related to scarring in
females (F3,9 = 4.525, pdir = 0.021). Second, we predicted
that males with longer genital spines should be more success-
ful in sperm competition. We tested this prediction in a multiple
regression model of P2R (see Experimental Procedures) by
using the three measures of male genital spines as predictor
variables. Again, the prediction was corroborated: males
with longer spines were more successful in sperm competi-
tion, whether variation male body size was accounted for
(F3,9 = 3.38, pdir = 0.042) or not (F3,9 = 3.30, pdir = 0.044). We

Figure 1. Male Genitalia and Injury to Females

The male genitalia of C. maculatus are armed with rigid spines that cause

internal injuries in females during copulation. The ventral spines are here

pointing toward top right and the dorsal spines in the opposite direction.

Males from some populations ([A]; Oman) have spines that are on average

almost 30% shorter than males from other populations ([B]; Volta). Males

from populations with shorter genital spines leave females with less internal

injuries ([C]; female mated once to a male from Oman) than do males from

populations with longer spines ([D]; female mated once to a male from

Volta). Arrows indicate melanized scars in the female copulatory duct.
note that this was particularly true for the length of the genital
spines on the ventral side of the male genitalia (N = 13, b0 =
0.77, t = 3.05, pdir = 0.009) (Figure 2), which are also the longest
spines (Figure 1) (length of dorsal spines: b0 = 0.15, t = 0.60,
pdir = 0.35; spiny area of genitalia: b0 = 0.14, t = 0.54, pdir =
0.37). Third, we predicted that high sperm competition
success should be positively associated with infliction of
harm to females. This prediction was tested in a multiple
regression model of P2R, by using the number of scars in the
copulatory duct and their area as predictor variables. This
model confirmed a positive relationship between P2R and
harm (F2,10 = 4.40, pdir = 0.026).

The analyses above show that male genital armature and the
harm that males inflict upon females are correlated and, more
importantly, that both are positively related to male success in
sperm competition. As in any comparative study, however, the
pattern of correlated evolution we document here may involve
confounding effects of other variables [26]. In our case, three
facts suggest that male spines are causally related to both
harm and sperm competition success. First, a causal link
between spines and harm has been established in ultrastruc-
tural studies [7]. Second, a link between spines and sperm
competition success has been explicitly predicted in several
previous contributions [7, 11, 15, 18, 27]. Third, our analyses
control for the potential effects of the most obvious putative
confounding variables, notably male phenotypic condition
and male and female body size.

Although our results provide the first complete support for
the frequent suggestion that sperm competition can select
for morphological traits in males that are harmful for their
mates [1, 3, 28], they are consistent with both the pleiotropic
harm and the adaptive harm hypotheses [15]. In order to better
distinguish between these hypotheses, we assessed the inde-
pendent effects of genital spines and harm to females on male
sperm competition success. The pleiotropic harm hypothesis
predicts that spines should show strongest independent
effects and the adaptive harm hypothesis predicts that harm
should show strongest independent effects. We tested this
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Figure 2. Covariation between Genital Spines and Sperm Competition

Success

The relationship between the average length of the ventral spines of the

genitalia and mean male fertilization success, here measured as the

absolute proportion of eggs that are fertilized by the second (focal) male

to mate with a female, across 13 populations of C. maculatus (rp = 0.63,

pdir = 0.016; randomization test based on 10,000 random permutations).

Line represents conventional linear regression.
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by first fitting a full multiple regression model of P2R, by using
both measures of scarring and our two measures of genital
spine length as predictor variables (F4,8 = 4.01, p = 0.044).
Dropping the two genital spine variables from this full model
resulted in twice as large reduction in fit to data (partial F2,8 =
3.29, p = 0.090), as did dropping the two scarring variables
(partial F2,8 = 1.73, p = 0.238). More importantly, the only vari-
able significant at pdir = 0.05 in the full model was the length of
the ventral genital spines (t = 2.55, pdir = 0.042) and a backward
stepwise regression of the full model (a to remove/enter = 0.1)
yielded a model containing only the length of the ventral genital
spines (b0 = 0.72, t = 3.43, pdir = 0.004). These analyses show
that genital spine morphology covaries with sperm competi-
tion success when statistically keeping harm to females
constant, whereas harm shows no such covariation when
genital spines are kept constant. It thus seems as if the genital
spines, rather than the harm they inflict, are causing the eleva-
tion seen in sperm competition success, as predicted by the
pleiotropic harm hypothesis.

Theory also assumes that intrasexual selection for harmful
traits must be strong in order to compensate for the costs of
harm inflicted [1]. In contrast to experimental studies with
phenotypic or genetic engineering, studies of the pattern of
covariation between phenotypic traits and reproductive
success can be used to provide estimates of the strength of
selection [29, 30]. Our design does not, however, allow the esti-
mation of conventional standardized phenotypic selection
coefficients [29]. Yet, the slope of the relationship between
mean trait values across populations (Figure 2) may reflect
phenotypic selection because male sperm competition
success was measured in a common sperm competitive back-
ground for all males. With P2R as a dependent variable (i.e.,
a male fitness component), the standardized regression coeffi-
cient of ventral spine length was b0 = 0.71 (rs = 0.80, pdir = 0.001)
in a univariate regression and b0 = 0.76 (t = 3.21, pdir = 0.011) in
a multiple regression, the latter controlling for covariation with
all other genital traits, male body size, and harm inflicted upon
females. Although these slopes should obviously be interpreted
with caution, because they are estimated across rather than
within populations, they do suggest that selection on genital
spines by sperm competition may indeed be strong [31].
Comparative work in this group have suggested that females
suffer fitness costs of harm [11], but several experimental
studies have shown that the fitness reduction that females
suffer as a result of injuries during copulation is restricted [7,
18, 19, 27], in part because of effective female resistance adap-
tations [11]. The large advantage in sperm competition sug-
gested by the above analyses may thus outweigh the cost to
males that stems from harming their mates. We note, however,
that the exact balance between these two factors will be contin-
gent upon factors such as the mating system, female life histo-
ries, and the sperm competition regime [1, 13, 14].

The proximate function of the genital spines is unknown.
They may serve as an anchor during copulation, help position
the male genitalia optimally within the female genital tract [18],
and/or aid in removal or displacement of rival sperm [32]. Alter-
natively, harm could act to elevate sperm competition
success, by for example increasing female uptake of acces-
sory seminal substances by puncturing the wall of the copula-
tory duct [33], but we note that our analyses suggest that this is
not the case because harm seemed to have no independent
effect on male sperm competition success. Future studies
with phenotypic manipulation of the genital spines may help
unravel their proximate function.
Conclusion
Earlier comparative work in seed beetles has established that
male genital armature and female resistance to these harmful
male traits are involved in sexually antagonistic coevolution
[11]. The present work shows that sperm competition seems
to be the engine of this coevolution: males with more harmful
genital spines are more successful in competition over the
fertilization of ova within females. In more general terms,
thus, our results provide novel support for the suggestion
that sperm competition can spawn sexually antagonistic
coevolution [1–3, 5, 28].

Experimental Procedures

Populations and Rearing

We used 13 geographically distinct focal populations of C. maculatus

(Benin, Brazil [London], California, IITA [Nigeria], Lossa, Mali, Oman, Oyo,

South India [London], Uganda, Upper Volta, Yemen, and Zaire) and, in

addition, a standard reference population (Nigeria mix). Although these

populations are genetically distinct [20] and differ to some extent in produc-

tivity and external morphology [21], they are fully reproductively compatible:

hatching rate of eggs in crosses between populations is invariably very high

(R95%). All beetles in this study were reared under standardized density on

black-eyed beans (Vigna unguiculata) at 30�C, 60% RH, and a 12L:12D light

cycle, and had been reared under this regime for at least 35 generations. We

used digital image analyses to secure three measures of the male genital

armature and two measures of the amount of harm males inflict upon

females (i.e., scarring in the copulatory duct). Male sperm competition

success was quantified in a standard competitive background, as P2 in

a double mating experiment with a ‘‘sterile male technique’’ protocol.

Male Genital Spines

In order to quantify key aspects of the genital armature, male genitalia

(N = 8–12 males per focal population) were inflated under CO2 anesthesia,

with an artificial inflator constructed by connecting a plastic micropipette

tip to an adjustable water-jet vacuum pump. Once fully inflated, male geni-

talia were stabilized in 100�C water and photographed (lateral view) with

a Lumenera Infinity 2-2 digital camera mounted on a Leica MZ8 dissection

microscope. Elytron length (mean length of left and right elytra) was also

measured for all males and used as a measure of body size. We then

employed image analysis to measure three aspects of the genital armature

for each male, with ImageJ (http://rsb.info.nih.gov/ij): (1) the average length

of the five longest ventral spines, (2) the average length of the five longest

dorsal spines, and (3) the length of the entire area of the genitalia bearing

spines.

Harm to Females

To standardize the impact of variation across females in susceptibility to

harm, this experiment involved only females from our standard reference

population. Virgin females were each mated once only (at age 1 day post-

emergence) to a virgin male from one of the focal populations (N = 13–15

pairs per population). Females were then isolated individually for R6 days

to allow for full melanization of internal injuries. We quantified the amount

of harm to females by dissecting out the copulatory duct and the bursa

copulatrix of all females. We then used image analysis (see above for setup)

to record two variables for each female: (1) the number of discrete mela-

nized scars in the wall of the copulatory duct [11] and (2) the total area of

all scars. Repeated measures on a subset of our data (N = 30 females)

showed that our measures of scarring were highly repeatable (repeatabil-

ities 0.96 and 0.98, respectively). Again, elytron length was recorded to

provide a measure of female body size.

Sperm Competition Success

Virgin females (1 day postemergence) of the reference population were each

first mated to a randomly selected virgin sterile male from the reference

population (sterilized by irradiation; 80 Grey, Caesium source). Females

were then isolated with a single bean for 48 hr, after which each female

was mated a second time to a virgin male from a focal population. Females

(N = 14–17 per focal population) were then kept individually in Petri dishes

containing 30 beans for oviposition for 7 days. After another 7 days of egg

maturation, all eggs were scored as hatched or unhatched. Male sterility

is higher than 99% at the irradiation dose used [20], and hatched eggs

http://rsb.info.nih.gov/ij
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were thus considered to have been fertilized by the focal second male. The

proportion of hatched eggs thus forms our measure of focal male fertiliza-

tion success (i.e., P2) for each female. Because variation in female prior

oviposition [34] and male phenotypic condition [35] are known to greatly

influence female sperm use and oviposition after a second mating in

C. maculatus, we used (1) the number of eggs laid by females between

the first and second mating and (2) a measure of the competitive environ-

ment during the larval stage for each focal male (the number of adults

emerging from their natal host bean) as two covariates in our models of

P2. Further, to control for individual level variation in these two variables

in our analyses of variation across populations, we regressed P2 (square-

root arcsine transformed) on the two variables and then used mean residual

P2 (denoted P2R) per population to characterize the sperm competitive

ability of males.

Statistical Methods

We used general linear models for statistical inference, in all cases where

the assumptions of such models (i.e., homogenous variances and normally

distributed residuals) were upheld. However, variance in sperm competition

success across males was analyzed with a generalized linear model, with

binominal errors and a logit link function, of the number of hatched eggs

with the total number of eggs laid after the second mating as the binominal

denominator. To compensate for overdispersion, we implemented the

method of Williams [36] prior to statistical inference.

When testing hypotheses in which the sign of the effect was predicted

a priori, we used directed tests [37]. Directed tests enable detection of

patterns that are opposite to predictions while retaining much of the statis-

tical power of one-tailed tests. In all directed tests (denoted pdir), we

followed the convention of setting g/a = 0.8 [37].
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löw at the Division of Biomedical Radiation Sciences, Uppsala University,

for access to the cesium source. P. Credland, R. Smith, and G. Keeney

kindly provided the beetles used in this study. L. Rowe and J. Rönn provided
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