Contents

	Preface	xi
1	Sexual Conflict in Nature 1.1 Evolving Views of Sex and Reproduction	1 2
	1.2 Sexually Antagonistic Selection and Sexual Conflict	6
	1.2.1 Intralocus Sexual Conflict	7
	1.2.2 Interlocus Sexual Conflict	10
	1.3 Aims and Scope	11
2	Sexual Selection and Sexual Conflict:	
	History, Theory, and Empirical Avenues	14
	2.1 Darwin's Views on Sexual Selection	14
	2.2 The Fisher Process	18
	2.3 Indicator, or Good Genes, Mechanisms	22
	2.4 The Male Trait	25
	2.5 Direct Benefits	26
	2.6 Preexisting Biases and the Origin of the Preference	27
	2.7 Sexual Conflict	29
	2.7.1 Parker's Initial Models of Sexual Conflict	30
	2.7.2 Genetic Models	31
	2.7.3 Phenotype-Dependent and Phenotype- Independent Costs	34
	2.7.4 Nonequilibrium Models	35
	2.8 Sexual Conflict Set in the Framework of Sexual Selection	35
	2.9 The Roles of the Sexes in Sexual Conflict	38
	2.10 Empirical Approaches to the Study of Sexual Conflict	40
3	Sexual Conflict Prior to Mating	44
	3.1 The Economy of Mating and the Evolution of Resistance	45
	3.1.1 Direct Costs of Mating	45

viii • CONTENTS

3.1.2 Costs of Low Mate Quality	46
3.1.3 Costs of Resisting Mating	47
3.1.4 Costs to Females as a Side Effect of Male-Male Competition	48
3.1.5 Sexual Conflict and the Evolution of Sexual Cannibalism by Females	50
3.1.6 Sexual Conflict and the Evolution of Infanticide by Males	53
3.2 Adaptations for Persistence and Resistance	55
3.2.1 Harassment and Resistance	57
3.2.2 Grasping Traits	60
3.2.3 Antigrasping Traits and Other Forms of Resistance	68
3.2.4 Exploitation of Sensory Biases	71
3.2.5 Convenience Polyandry	77
3.3 Sexual Conflict and Sexual Selection	78
3.4 Mate "Screening" and Other Alternative Explanations for Resistance Traits	80
3.5 Case Studies in Sexually Antagonistic Coevolution	83
3.5.1 Diving Beetles	83
3.5.2 Water Striders	84
3.5.3 Bedbugs	87
4 Sexual Conflict after Mating	92
4.1 Female Reproductive Effort and the Conflicting Interests of the Sexes	96
4.1.1 Seminal Substances with Gonadotropic Effects	97
4.1.2 Nuptial Feeding	102
4.1.3 Male Display Traits	103
4.2 Female Mating Behavior, Sperm Competition and the Conflicting Interests of the Sexes	^{1,} 106
4.2.1 Male Defensive Adaptations and Sexual Conflict	107
4.2.1.1 Costs of Delaying Remating in Females	111
4.2.1.2 Female Costs as Side Effects	116
4.2.1.3 Female Costs as a Direct Target of Male Strategies	118
4.2.2 Male Offensive Adaptations and Sexual Conflict	121

CONTENTS • ix

4.2.2.1 Sperm Competition and Aggressive Ejaculates	121
4.2.2.2 Direct Costs, Polyspermy, and Female Infertility	122
4.2.2.3 Indirect Costs and Deleterious Matings	128
4.2.2.4 Conflicts over Cryptic Female Choice	129
4.3 Conflicts over the Duration of Mating	132
4.3.1 Male and Female Adaptations	135
4.4 Postmating Conflicts and Male-Female Coevolution	139
4.5 Elaborated Male Ejaculates: Nuptial Gifts or Medea Gifts?	140
4.6 Are Male Postmating Adaptations Costly to Females?	146
4.7 It Takes Two to Tango: Sexually Antagonistic Coevolution in Fruit Flies	149
Parental Care and Sexual Conflict	156
5.1 The Basic Conflict	156
5.2 Mate Desertion	158
5.2.1 Conflict over Care and Desertion in Uniparental Species	158
5.2.2 Never Trust a Penduline Tit!	160
5.3 "Partial" Mate Desertion and Sexual Conflict over the Mating System in Biparental Species	164
5.4 Sexual Conflict over the Relative Amount of Care in Biparental Monogamous Species	170
5.5 The Dunnock: Family Life in Cambridge University Botanic Garden	174
Other Implications of Sexual Conflict	179
6.1 The Evolution of Genomic Imprinting	179
6.2 Sexual Conflict, Sex Ratios, and Sex Allocation	183
6.3 Dueling Worms and Stabbing Snails: Sexual Conflict within Hermaphrodites	185
6.3.1 Premating Conflict in Hermaphrodites	187
6.3.2 Postmating Conflict in Hermaphrodites	190
6.3.3 Sexual Selection and Antagonistic Coevolution in Hermaphrodites	192

x • CONTENTS

	C.2.4. The Lave Dart in Casila A Chat at	
	Paternity?	196
	6.4 Sexual Conflict in Plants	200
	6.5 Sexual Conflict, Speciation, and Extinction	203
	6.5.1 Sexual Conflict as an Engine of Evolutionary Divergence	207
	6.5.2 Population Crosses—Inferring Process from Pattern	210
	6.6 Sexual Conflict and Sex Chromosomes	212
7	Concepts and Levels of Sexual Conflict	216
	7.1 Levels of Analysis	216
	7.2 Resolution of Sexual Conflict	219
	7.3 Winners and Losers of Sexual Conflict?	220
	7.4 Sexual Conflict over the Control of Interactions	222
	7.5 The Intensity of Sexual Conflict	223
	7.6 Sexual Conflict over Mate Choice	224
8	Concluding Remarks	226
	References	229
	Author Index	305
	Subject Index	321

Preface

Early in our Ph.D. programs, we met briefly at the XVIIIth International Congress of Entomology in Vancouver. At the time, both of us were studying the reproductive biology of water striders, so we kept in touch over the next few years. Remarkably, by the end of our degrees, we discovered we had independently come to the same conclusions about the mating system of these species—and that conclusion was sexual conflict. Since then, through the work of several laboratories, water striders have become much like *Drosophila*—a model system for the study of sexual conflict. This is a mixed blessing. On the one hand, it feels good to us to have been involved in their rise to prominence. Yet, just like fruit flies, water striders are regarded by some as poor representations of the "real" world. One aim of this book is to convince readers that this may not be true.

The idea of a book on sexual conflict was hatched in 2000, during a sabbatical leave in Umeå. At the time, growth in the field was explosive, and we felt a book was much needed. New discoveries and interpretations were accumulating rapidly as scientists increasingly considered the potential of conflict to shape male-female interactions. We felt a book would help to organize these observations, and set them in the context of established theories of sexual selection and mating system evolution. This book is written in that spirit. We are promoting the hypothesis that sexual conflict is an underappreciated force in the evolution of the sexes and their interactions. As such, many readers will feel that we have not spent enough time debating the alternatives. We acknowledge this. Instead, we point the way to interesting new systems where sexual conflict can be studied, and offer new interpretations of data that had been more or less routinely interpreted in a more classic framework. We believe that it is time to revise our view of male-female interactions, and we think that this exercise will lead to interesting discoveries. We have written this book primarily for graduate students and researchers working in evolution and evolutionary and behavioral ecology. We also anticipate that this book will have some utility for undergraduates and nonspecialists.

At the time we signed on for this book, it felt like a fairly minor endeavor maybe like writing several papers, but without having to either do the experiments or analyze the data. It wasn't. It seemed to take a long time. And there are certainly interesting obstacles to overcome when authorship is joint. But, now that it is over, producing the book has also been more educational and more fun than we had presumed. Many people have contributed to this book. These include dozens of scientists too numerous to mention, who have provided photos and data, and who have generously shared their expertise with

xii • PREFACE

us. We thank them. Graduate students and other members of our laboratories have also contributed much, including ideas, references, and critical discussions, sometimes without even knowing it. Anna Gosline helped research parts of chapter 3. We are particularly grateful to our friends José Andrés, Russell Bonduriansky, Troy Day, and Ted Morrow for many hours of enlightening discussion about theory, tests, and interpretation. Drafts of various chapters were read by a number of colleagues, who all gave insightful and valuable comments that have helped us avoid most slipups (chapter): Anders Berglund (6), Mark Blows (2), Russell Bonduriansky (2,3), Tracey Chapman (4), Troy Day (2), Magnus Enquist (7), Jaco Greff (6), Dave Hoskens (4), Roger Härdling (7), Mark Kirkpatrick (2), Joris Koene (6), Hanna Kokko (2), Kate Lessels (5), Nico Michiels (6), Rolf Ohlsson (6), Leigh Simmons (4), Tamas Szekely (5), and Jon Ågren (6). Tom Tregenza and an anonymous reviewer read the entire body of the book-we are most grateful for their effort and insight. These chapters are so much better because of them. Joyce Besch did an enormous amount of editorial work on the text and references, and did it at the speed of light! Our editor Sam Elworthy and the staff at Princeton University Press were encouraging, professional, and very patient. We gratefully received financial support during the period the book was written from our main sources of research funds, the Swedish Research Council and the Natural Sciences and Engineering Research Council of Canada, as well as funds from the Swedish Foundation for International Cooperation in Research and Higher Education, the Knut and Alice Wallenberg Foundation, Premiers Research Excellence Award, and the Magnus Bergvalls Stiftelse. This book would certainly not have been possible without this support.

Our families never veered in their support, despite suffering our periods of distraction, and late-night writing binges, and, at times, having to live with the two of us under a single roof.

Toronto April, 11, 2004 Göran Arnqvist Locke Rowe