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Positive and negative natural selection generally erodes genetic 
variation and genetic drift further contributes to this decline. 
Despite the potential influx of new alleles through gene flow and 
mutation, we expect populations to have little genetic variation 
in those genes under selection. Yet, traits related to fitness, in-
cluding life-history (LH) traits often have genetic variances 
exceeding those expected under mutation-selection balance 
(Barton & Keightley,  2002; Charlesworth,  2015; Charlesworth & 
Hughes,  2000). A major source of this excess variation is often 

considered to be balancing selection resulting from heterozygote 
advantage, antagonistic pleiotropy, negative frequency-dependent 
selection (NFDS) or from spatially or temporally varying directional 
selection. We currently lack strong evidence for their relative con-
tributions, but recent evidence suggest that balancing selection in-
deed acts to maintain variation in LH traits (e.g. Barson et al., 2015; 
Charlesworth,  2015; Grieshop & Arnqvist,  2018; Hughes & 
Leips, 2006; Johnston et al., 2013; Remolina et al., 2012; Sharp & 
Agrawal, 2018).
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Evolutionary genetics has long struggled with understanding how functional genes 
under selection remain polymorphic in natural populations. Taking as a starting 
point that natural selection is ultimately a manifestation of ecological processes, 
we spotlight an underemphasized and potentially ubiquitous ecological effect that 
may have fundamental effects on the maintenance of genetic variation. Negative 
frequency dependency is a well-established emergent property of density depend-
ence in ecology, because the relative profitability of different modes of exploiting or 
utilizing limiting resources tends to be inversely proportional to their frequency in a 
population. We suggest that this may often generate negative frequency-dependent 
selection (NFDS) on major effect loci that affect rate-dependent physiological pro-
cesses, such as metabolic rate, that are phenotypically manifested as polymorphism 
in pace-of-life syndromes. When such a locus under NFDS shows stable interme-
diate frequency polymorphism, this should generate epistatic selection potentially 
involving large numbers of loci with more minor effects on life-history (LH) traits. 
When alternative alleles at such loci show sign epistasis with a major effect locus, 
this associative NFDS will promote the maintenance of polygenic variation in LH 
genes. We provide examples of the kind of major effect loci that could be involved 
and suggest empirical avenues that may better inform us on the importance and 
reach of this process.
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A recent focus in LH research is the pronounced individual 
phenotypic variation within populations in suites of correlated 
rate-dependent LH traits, often referred to as pace-of-life (POL) 
syndromes (Réale et al., 2010; Ricklefs & Wikelski, 2002). In some 
cases, the distribution of such traits is even bimodal (e.g. Damsgård 
et al., 2019; Struelens et al., 2018), where some individuals show a 
relatively fast POL, characterized by high metabolic rate, small body 
size, short life span and early reproductive maturity, while others 
show a slower POL. This covariance among multiple LH traits is be-
lieved to arise from correlational selection (Réale et al., 2010) and 
a shared dependency on underlying physiological traits (Ricklefs & 
Wikelski, 2002), where metabolic rate constitutes a nexus (Brown 
et al.,  2004, 2022; Burger et al.,  2019). Suites of correlated be-
havioural traits are also sometimes incorporated into this frame-
work (Réale et al.,  2010). Ecological factors clearly have a central 
role in POL evolution (Dammhahn et al., 2018) and environmental 
conditions and suites of LH traits often covary across species in 
many groups (Stearns, 1983): species experiencing more frequent or 
severe resource limitation tend to show a slower POL compared to 
species living in environments where resource competition is less 
intense (Arnqvist et al., 2022).

Here, we bring attention to the fact that eco-evolutionary the-
ory predicts the evolution and maintenance of polymorphism in 
POL phenotypes (Diekmann, 2003) and we argue that this may have 
important and underappreciated effects on the maintenance of 
variation in LH-related genes. Briefly, when resource availability is 
limited and organisms face trade-offs between competing demands, 
LH strategies that are relatively rare may enjoy a fitness advan-
tage over the more common, leading to NFDS (Heino et al., 1998). 
In fact, negative frequency dependency is an emergent property 
of ecological density dependency and we expect this to be com-
mon (Heino et al.,  1998; Kisdi,  1999) and to generate divergent 
POL phenotypes (Wolf et al., 2007). This well-known form of eco-
evolutionary feedback has actually been recognized for decades. For 
example, Lewontin (1974) noted that ‘if resources are in short supply 
and if each genotype exploits the resources in a slightly different 

way’ then ‘a genotype is its own worst enemy’ and NFDS will be 
the result. Lewontin, in fact, insisted that frequency- and density-
dependent selection is a major complication in our understanding 
of evolution (Lewontin, 2003). Thus, we use NFDS in its broadest 
possible sense (Heino et al., 1998) to also include scenarios where 
NFDS is an emergent property of ecological density dependence 
(Anderson,  1971; Antonovics & Kareiva,  1988; Bell et al.,  2021; 
Clarke, 1979; Gallet et al., 2018; Kisdi & Geritz, 1999; Levene, 1953; 
Mallet, 2012; Wallace, 1975). This inclusive definition expands upon 
a narrower population genetic definition, where the fitness of a gen-
otype is density independent and defined only by its frequency, to 
include more realistic and complex scenarios where NFDS emerges 
from density-dependent selection (Antonovics & Kareiva,  1988; 
Clarke,  1979; Kisdi,  1999; Mallet,  2012; Wallace,  1975). We note 
that theory predicts that this form of NFDS can favour the evolution 
of a genetic architecture which is ‘concentrated’ to one or a few re-
gions, corresponding to polymorphisms in traits that are related to 
ecological competition (Kopp & Hermisson, 2006; Schneider, 2007; 
van Doorn & Dieckman, 2005; Yeaman, 2022).

Under various forms antagonistic or alternating selection, where 
optimal phenotypes differ in space or time, local density-dependent 
soft selection can effectively result in global NFDS (e.g. Gallet 
et al.,  2018). We thus include in our discussion cases where sta-
ble polymorphism is traditionally not seen as being maintained by 
NFDS, but, for example, by spatially varying selection, where den-
sity dependence and NFDS may well be contributing to their main-
tenance. For example, clines in inversion frequencies with impacts 
on LH traits are well known. These clines are often interpreted as 
resulting from spatially varying selection, but experimental evidence 
from some of these suggest a role for NFDS (see below). This said, 
we note that the broader effects discussed below are predicted to 
emerge for protected polymorphism of any major effect locus af-
fecting POL syndromes (POL loci), independent of precisely how 
selection operates to maintain that polymorphism.

The ubiquity of competition for limiting resources in natural pop-
ulations (Gurevitch et al., 1992) suggests that disruptive and NFDS 

F I G U R E  1  Competition for limiting ecological resources is often expected to result in disruptive selection within populations on 
traits that relate to resource use. This is predicted to lead to divergence and polymorphism in life-history (LH) phenotypes, reflecting 
alternative ways of utilizing resources. In some cases, a causal polymorphism in major effect loci affecting the ‘pace-of-life’ (POL) will thus 
be maintained by negative frequency-dependent selection (NFDS), as each allele or haplotype will essentially be its own worst competitor 
in resource competition. The maintenance of this polymorphism by NFDS will, in turn, have cascading effects on selection on a range of 
LH genes that show epistasis for fitness with this POL locus. For example, the F allele at a particular LH locus increases fitness when co-
expressed with the Fast POL allele but decrease fitness when co-expressed with the Slow POL allele. If POL loci and LH loci affect distinct 
aspects of POL phenotypes, this would be manifested as correlational selection at a phenotypic level. We suggest that this process may 
generally act to elevate standing genetic variation in potentially many LH genes and we refer to this as associative NFDS.
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on LH traits may frequently contribute to the maintenance of stable 
polymorphism in POL loci. Because LH traits are typically polygenic, 
any additional LH locus with more minor effects that adds to POL 
phenotypes will show diminishing rewards epistasis for fitness with 
POL loci (Whitlock et al.,  1995). However, these epistatic effects 
should differ in sign across POL locus alleles (Figure 1). Briefly, we 
predict cascading effects of NFDS on selection at any LH locus that 
shows epistasis with POL loci. We refer to this scenario as associa-
tive NFDS (Figure 1). Here, we first ask whether there are any known 
examples of genes that may represent polymorphic POL loci segre-
gating under NFDS in natural populations and warrant further study. 
We then ask what effects these polymorphisms should have on the 
maintenance of genetic variation in LH genes that interact with POL 
loci and, finally, we consider empirical efforts that would help shed 
light on the importance of these processes.

1  |  MA JOR EFFEC T LOCI AFFEC TING POL 
AND NFDS

POL loci could represent sets of tightly linked genes or a single locus 
with major effects. Among the former, paracentric chromosomal 
inversions are prime candidates. These represent chromosomal 
stretches of varying length, often harbouring tens to hundreds or 
even thousands of functional genes, which are inverted in order. 
Because recombination rate is suppressed within inversion heter-
okaryotypes, enclosed genes segregate as one unit essentially mak-
ing them ‘supergenes’ (Schwander et al., 2014).

The study of the evolutionary implications of inversions has 
a long and rich history (Hoffmann & Rieseberg,  2008; Kapun & 
Flatt, 2019; Wellenreuther & Bernatchez, 2018). Here, we highlight 
two specific insights from this body of research. First, variation in 
inversion genotype is associated with key LH and related pheno-
types in many taxa, including metabolic syndromes, growth rate, 
body size, stress resistance, life span, development time, fecun-
dity and viability (González, Ruiz-Arenas, et al., 2020; Hoffmann & 
Rieseberg, 2008; Pampoulie et al., 2023; Rane et al., 2015). Inversion 
polymorphism has also been directly associated with the regulation 
of genes that determine metabolism and energy production (Cheng 
et al., 2018; De Jong & Bochdanovits, 2003; Ibrahim et al., 2021). All 
of this suggests that inversions often affect multiple rate-dependent 
LH traits and enclose key LH genes. Second, there are many well-
documented examples of geographical clines in inversion poly-
morphism where frequencies are associated with environmental 
gradients, some of which are even replicated on different continents 
(e.g. Kapun & Flatt, 2019; Wellenreuther & Bernatchez, 2018). Such 
clines are often ascribed to divergent directional selection in differ-
ent parts of the cline, but are also consistent with balancing selec-
tion with environmental effects on equilibrium frequencies (Berdan 
et al., 2022). Here, density dependency and frequency dependency 
may be involved. The results of a number of laboratory cage culture 
experiments in several species of Drosophila are at least consistent 
with NFDS, as inversions return to intermediate frequencies after 

perturbation (Alvarez-Castro & Alvarez,  2005; Dobzhansky,  1992; 
Durmaz et al., 2020; Krimbas & Powell, 1992; Nassar et al., 1973; 
Tobari & Kojima, 1967). We note that the fact that recent efforts to 
understand the maintenance of inversion polymorphism has high-
lighted balancing selection (Berdan et al.,  2022) is interesting in 
this regard, as inversions could represent unusually detectable and 
large effect variants that are symptomatic of underlying generally 
applicable evolutionary processes and amenable to study. Although 
much recent theory on inversions focuses on the accumulation of 
deleterious mutations and associative overdominance (e.g. Berdan 
et al., 2021), the above considerations suggest that inversions some-
times represent POL loci where polymorphism is instead maintained 
at least in part by NFDS. One striking example is the rainbow trout, 
where a major POL polymorphism appears to be maintained by 
NFDS (Christie et al., 2018) and is at least in part underlain by an in-
version polymorphism (Pearse et al., 2019). Another is the seaweed 
fly Coelopa frigida, where inversion karyotypes differ in important 
LH traits (Mérot et al.,  2020) and NFDS appears to play a role in 
the maintenance of geographical clines in inversion polymorphism 
(Mérot et al., 2018).

Many other types of structural variants besides inversions 
may also represent POL loci, such as variable number tandem re-
peat (VNTR) polymorphism including mini/microsatellites. One ex-
ample may be the MAOA locus in primates. MAOA is an X-linked 
locus involved in the metabolism of neuropeptides that regulate 
behaviour in a wide sense. The promoter region of MAOA contains 
a VNTR polymorphism in humans, where the 3R and 4R variants of 
a 30 bp tandem repeat motif are the two common alleles present, 
which differentially affect transcription of MAOA. Three facts sug-
gest that this VNTR may represent a POL locus. First, allelic VNTR 
variation has been associated with a large number of phenotypes 
in humans. Most of these are rate-dependent behaviours (Ficks 
& Waldman,  2014), including food intake and growth, but they 
also include LH phenotypes related to metabolic syndromes (Dias 
et al., 2016). Second, VNTR polymorphism in humans is ubiquitous 
and show similar allele frequencies across populations, in a variety 
of geographical locations. The frequency of the 3R allele ranges be-
tween 29% and 61% and that of the 4R allele between 36% and 71% 
(Caspi et al., 2002; Deckert et al., 1999; Sabol et al., 1998; Widom 
& Brzustowicz,  2006). Third, several other primates harbour anal-
ogous VNTR polymorphisms in the MAOA promoter region (Choi 
et al., 2014; Inoue-Murayama et al., 2006; Wendland et al., 2006), 
although the repeat sequence motif differs, suggesting an ancient 
trans-specific functional polymorphism in this region. These fac-
ets of MAOA variation are consistent with NFDS in this region, and 
NFDS generated by competitive interactions has been suggested to 
act to maintain VNTR variation (McDermott et al., 2009).

Colour polymorphism provides several classic examples of 
NFDS (Svensson,  2017). An intriguing possibility is that such 
phenotypic markers may be closely integrated with physiologi-
cal processes that have important LH consequences (Svensson 
et al.,  2020). Genetic regions dictating colour may then repre-
sent POL loci, or may interact with POL loci, and be subject to 
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associative NFDS. One potential example are the colour morphs 
of female Colias butterflies that also differ in POL, a phenotype 
recently mapped to a transposable element insertion (Woronik 
et al.,  2019). Another may be the degree of melanization more 
generally (Ethier & Despland, 2012) as melanin production is in-
timately linked to life histories. Interestingly, a region responsible 
for polymorphic light/dark coloration is in strong linkage disequi-
librium with an inversion known to be associated with POL in some 
populations of D. melanogaster (Takahashi & Takano-Shimizu, 2011; 
Telonis-Scott & Hoffmann, 2018), consistent with strong epistatic 
selection. Similarly, colour polymorphism in owls maps to genes in 
the melanin pathway (Cumer et al., 2023) is associated with both 
metabolic rate (Mosher & Henny, 1976) and key LH traits (Da Silva 
et al., 2013; Kvalnes et al., 2022) and is likely maintained by pro-
cesses similar to those discussed here (Roulin, 2004).

Structural POL loci may also involve copy number variants of 
coding genes. A recent potential example is the polymorphism in 
copy number of TOR located on the Y-chromosome of seed beetles 
(Kaufmann et al., 2023). Two alternative Y haplotypes (single TOR 
copy and three TOR copies) segregate in at least one natural popula-
tion and have very pronounced effects on male body size (Kaufmann 
et al., 2021) and growth rate (Kaufmann et al., 2023). Interestingly, 
TOR is a major LH gene showing signs of balancing selection in other 
systems (see below) and Y polymorphism in seed beetles may thus 
reflect balancing selection though NFDS, which apparently contrib-
utes to the maintenance of Y polymorphism in some other taxa (e.g. 
Sandkam et al., 2021; Van Hooft et al., 2018).

We suggest that another likely example of a POL locus is mi-
tochondrial DNA. Mitochondrial DNA (mtDNA) can be thought 
of as a supergene (Ballard & Melvin, 2010) which typically carries 
13 co-segregating genes along with sites that affect mitochon-
drial transcription and translation and is somewhat special as it 
is maternally inherited, haploid and does not recombine. Because 
mtDNA genes encode for parts of the very heart of metabolism—
the ATP-producing OXPHOS pathway—there are very good rea-
sons to regard mtDNA as candidate POL loci. We highlight two 
specific facets of recent research on mtDNA that support this 
view. First, within-population mtDNA polymorphism is very com-
mon, but was long assumed to be non-functional and neutral. 
However, recent research has associated mtDNA polymorphism 
with key rate-dependent LH and related phenotypes, such as de-
velopment time (Christie et al.,  2004; Erić et al.,  2022), longev-
ity (Jelić et al.,  2015), stress resistance (Jelić et al.,  2015; Sun 
et al., 2019), general activity (Ueno & Takahashi, 2021) and even 
metabolic rate (Baris et al., 2017; Đorđević et al., 2016; Kurbalija 
Novičić et al., 2015). Second, observations such as those of stable 
mtDNA haplotype frequencies over time and space (Andrianov 
et al., 2008; Oliver et al., 2005), environmental clines in haplotype 
frequencies (McKenzie et al.,  2019; Silva et al.,  2014) and wide-
spread polymorphism of deeply divergent mtDNA haplotype fami-
lies (Kvie et al., 2013) are all consistent with balancing selection. If 
we accept the tenet that mtDNA may represent a POL locus, this 

has an important implication: the fact that overdominance cannot 
occur in the haploid mtDNA points to NFDS in the maintenance of 
these polymorphisms. Several laboratory experimental evolution 
studies of insects have actually shown that mtDNA haplotype fre-
quencies tend return to intermediate frequencies when perturbed 
(Kazancıoğlu & Arnqvist,  2014; Kurbalija Novičić et al.,  2020; 
MacRae & Anderson, 1988; Oliver et al., 2005).

Single major effect loci may of course also represent POL loci. 
However, associating variation in complex LH traits even with loci 
with major effects is difficult (Schielzeth et al., 2018) and detecting 
NFDS at particular sites is even more difficult (Bitarello et al., 2023; 
Fijarczyk & Babik, 2015). Hence, it is perhaps not surprising that there 
are few well-studied examples. One possible example may be the for 
locus in D. melanogaster, which codes for a cGMP-dependent pro-
tein kinase. Allelic variation here is associated with rate-dependent 
LH traits (Kaun et al., 2007; Kent et al., 2009), experiences NFDS 
in at least some laboratory environments (Fitzpatrick et al.,  2007) 
and there is some evidence that natural populations are polymorphic 
(Sokolowski et al., 1997). A second example may be the npr-1 locus 
in Caenorhabditis elegans (Gloria-Soria & Azevedo,  2008). Allelic 
variants in this region are associated with rate-dependent LH traits 
(Andersen et al., 2014) and experimental evidence is consistent with 
polymorphism being maintained in the laboratory by balancing se-
lection (Gloria-Soria & Azevedo, 2008; Greene et al., 2016).

A third example may be genes in the AMPK (AMP-activated 
protein kinase) signalling complex, such as the SNF4Aγ locus in 
Drosophila flies. This gene shows intermediate frequency and shared 
clinal polymorphism in D. melanogaster and D. simulans (Fabian 
et al., 2015; Mallard et al., 2018), consistent with a role for long-term 
balancing selection. Furthermore, it bears the hallmarks of an LH 
locus as it is involved in sensing the availability of nutrients and en-
ergy and in the regulation of cell growth (González, Hall, et al., 2020; 
González, Ruiz-Arenas, et al., 2020) and is known to affect life span 
in D. melanogaster (Tóth et al., 2008).

A fourth example is genes in the insulin/insulin-like (IIS) / target-
of-rapamycin (TOR) signalling pathway. This well-known pathway 
plays a major role in nutrient sensing and energy homeostasis, and 
has well-documented effects on key LH traits (such as growth, me-
tabolism and ageing) in diverse taxa. In Drosophila, several genes in 
the IIS/TOR pathway show clinal polymorphism shared across con-
tinents (Fabian et al.,  2015), consistent with balancing selection. 
In-depth studies of one of these have shown that the clinal alter-
native alleles indeed affect fat metabolism, viability and body size 
(Betancourt et al., 2021; Durmaz et al., 2019; Paaby et al., 2014). In 
humans, the gene RPTOR also shows clinal polymorphism shared 
across continents, which correlates with environmental factors 
(Hancock et al., 2008), suggesting balancing selection (Novembre & 
Di Rienzo, 2009). In addition to these examples, we note that there 
are many cases of apparently stable polymorphism in loci with major 
effects on metabolism and growth, such as the PGM locus in dung 
flies (Ward et al., 2004) and the LDH-B locus in killifish (DiMichele 
& Powers, 1982).
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2  |  POL LOCI AND THE MAINTENANCE 
OF GENETIC VARIATION IN REL ATED LH 
GENES

We have outlined a scenario where resource competition results in 
NFDS for divergent life histories that, in turn, generates stable poly-
morphism in POL loci. However, LH traits are polygenic and LH phe-
notypes will thus be affected by many additional loci, many of which 
are physically unlinked with the POL locus. For example, there is 
evidence that mtDNA shows epistasis with nuclear loci for LH traits 
(Rand, 2017; Wolff et al., 2014). We predict that many LH-related 
loci will show epistatic interactions with POL loci in a manner where 
alternative variants are favoured by selection when residing with 
each alternate allele or haplotype of the POL locus. Balancing selec-
tion though NFDS in a POL locus would then have cascading effects 
on selection in many other LH loci. For example, an allele which in-
creases development rate may elevate fitness when co-expressed 
with a fast POL locus allele but depress fitness with a slow POL locus 
allele. In theory, we thus expect segregating POL loci to generate 
widespread epistatic selection involving many LH loci through what 
we term associative NFDS (Figure 1).

If stable polymorphism in POL loci is maintained in a population 
by NFDS, then we predict that variation in epistatically interacting 
LH loci will be elevated as a result of a reduced rate of fixation. In es-
sence, POL loci can be thought of as alternate environments in which 
segregating alleles at polymorphic loci find themselves expressed 
at a frequency that matches the POL locus variants' frequency in 
the population. It is easy to imagine that some alleles at LH loci are 
favoured when co-expressed with one POL allele but disfavoured 
with the other. This form of antagonistic selection bears similarities 
to that arising from temporal or spatial environmental variation or 
sex-specific selection (Hoekstra, 1975; Levene, 1953; Prout, 2000). 
Here, the alternate alleles or haplotypes of the POL loci constitute 
the environments, and the opposing selection results from epistatic 
interactions, rather than gene × environment or gene × sex interac-
tions. In light of prior theory on balancing selection resulting from 
such antagonistic selection, we would expect the impact on the 
persistence of polymorphism in these unlinked loci to be greatest 
when alternating or opposing selection is strong and symmetrical 
or when there are dominance reversals for fitness leading to net 
heterozygote advantage (Charlesworth & Hughes, 2000; Connallon 
& Chenoweth,  2019; Hedrick,  1986; Hoekstra,  1975; Posavi 
et al., 2014; Prout, 2000; Wittmann et al., 2017). In addition, as is 
true for both gene × environment (Felsenstein, 1976) and gene × sex 
interactions (Kidwell et al., 1977), epistasis between POL and other 
LH loci will generate overdominance for fitness under reasonable 
conditions. This is because the harmonic mean fitness will tend to 
be highest for heterozygotes in both loci since fitness variance over 
different genetic backgrounds tends to be lowest for heterozygotes.

A useful analogy for POL loci and epistatically interacting LH al-
leles is sex and sexually antagonistic alleles. Here, the two sexes (the 
genetic environments) are maintained by NFDS at a ratio of 1:1 and 
segregating alleles in autosomal loci will find themselves in a male 

or a female environment about 50% of the time. The expectation 
is that alleles that are beneficial to both sexes, or beneficial in one 
and neutral in the other, will soon fix under net directional selection. 
However, if loci have alternate alleles that are beneficial in one sex 
but detrimental to the other, sexually antagonistic selection can lead 
to their maintenance. While the conditions required for a protected 
polymorphism by balancing selection are fairly narrow, they are 
widened considerably by dominance reversals between the sexes 
(Arnqvist et al.,  2014; Fry,  2010; Kidwell et al.,  1977) and recent 
data suggest that these may be more common than previously ex-
pected (Barson et al., 2015; Grieshop & Arnqvist, 2018; Meiklejohn 
et al.,  2014; Pearse et al.,  2019). In fact, the conditions for domi-
nance reversals may be widespread (Connallon & Chenoweth, 2019; 
Otto & Bourguet,  1999; Wittmann et al.,  2017). Even in the ab-
sence of dominance reversals, sexually antagonistic selection can 
elevate standing genetic variance by elevating the persistence time 
of alternate alleles (Connallon & Chenoweth,  2019; Connallon & 
Clark, 2012, 2014).

While NFDS in a POL locus no doubt will affect selection in 
other loci through epistasis (e.g. Udovic, 1980), the effects of this 
on the maintenance of variation in other loci will critically depend 
on the rate of recombination (Neher & Shraiman, 2009). Needless 
to say, the longevity of polymorphism at these loci would be much 
promoted if they were physically linked to the POL locus. There are 
reasons to believe that linkage may evolve. One means would be the 
evolution of LD via epistatic selection or through assortative mat-
ing by fitness or LH traits, mediated by for example segregation of 
LH phenotypes in space or time. The latter is likely to occur when 
POL variation affects reproductive timing, in which case assorta-
tive mating by time should result in LD and in recurrent seasonal 
clines in allele frequencies (Fox, 2003; Hendry & Day, 2005; Weis 
& Kossler, 2004). Observations of seasonal clines in allele frequen-
cies are common and are sometimes known to involve candidate 
POL loci such as inversions (e.g. Machado et al., 2021; Rodriguez-
Trelles et al., 1996; Rudman et al., 2022) and mtDNA (e.g. Christie 
et al.,  2010). We also note that one would predict that epistatic 
selection for co-segregation between POL variants and favourable 
LH alleles at other loci would favour physical linkage, either though 
translocation of these loci or through stepwise extension of POL in-
versions to recruit additional LH loci, leading to sequential recombi-
nation suppression and the generation of evolutionary strata within 
inversions (Huang & Rieseberg,  2020) analogous to that seen in 
some sex chromosomes (Wright et al., 2016).

3  |  WHAT DO WE NEED?

Detecting balancing selection in general, and NFDS in particular, is 
very challenging (Bitarello et al., 2023; Fijarczyk & Babik, 2015). The 
standard empirical toolbox we use to better understand selection 
and adaptation using genomic data, based largely on various forms 
of outlier detection, will typically not able to detect and shed much 
light on associative NFDS (Fijarczyk & Babik, 2015; Wellenreuther 
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& Hansson,  2016). The fact that key LH phenotypes are typically 
highly polygenic further exacerbates the challenge (Barton,  2022; 
Csilléry et al., 2018). As a consequence, inferences based solely on 
genome scans and reverse genetics of adaptation will necessarily 
assign a very biased view of the role of NFDS in maintaining vari-
ation (Bomblies & Peichel, 2022; Fijarczyk & Babik, 2015; Tiffin & 
Ross-Ibarra, 2014). Here, we suggest that there are several lines of 
enquiry that may prove helpful in determining the importance and 
reach of NFDS in maintaining variation in LH-related genes.

3.1  |  Identifying candidate POL loci

The phenotypic manifestations of major effect loci have been in-
vestigated for inversions (Hoffmann & Rieseberg, 2008) and mtDNA 
(Wolff et al.,  2014). We have noted that these are candidate POL 
loci, in part because they have significant effects on metabolic rate 
and life histories. Yet, few studies have asked whether these candi-
date POL loci actually map to known POL variation in that species. 
For example, the effects of POL loci on metabolic rate are not gener-
ally well investigated, although there are a few examples (Gangloff 
et al.,  2020; Kurbalija Novičić et al.,  2015; Pichaud et al.,  2012). 
Moreover, a much broader and deeper understanding of the LH 
consequences of polymorphism in candidate POL loci would be 
useful. For example, POL loci should be significantly enriched with 
genes involved in metabolic processes, reflecting the central role 
of metabolic rate in life histories (Brown et al., 2004, 2022; Burger 
et al., 2019; Kapun et al., 2016). While this is per definition true for 
mtDNA, improved annotation and enrichment analyses of poly-
morphic inversions would be interesting in this regard (e.g. Rane 
et al., 2015).

3.2  |  Identifying NFDS on candidate POL loci

Experimental studies where replicated populations are seeded 
with known allele frequencies of major effect loci and where al-
lele frequency dynamics are then tracked over time can implicate 
NFDS (Alvarez-Castro & Alvarez, 2005; Dobzhansky, 1992; Durmaz 
et al., 2020; Kazancıoğlu & Arnqvist, 2014; Krimbas & Powell, 1992; 
Kurbalija Novičić et al.,  2020; MacRae & Anderson,  1988; Nassar 
et al.,  1973). This approach would be profitably extended to can-
didate POL loci. The straightforward prediction being that after 
perturbation, allele frequencies will return to intermediate values if 
NFDS is operating. If competition between alleles is implicated in 
their maintenance, it can be tested by experimentally varying the de-
gree of resource competition across evolving populations (Kurbalija 
Novičić et al., 2020). Short-term experimental fitness assays of major 
effect loci as a function of their allele frequencies and the level of 
resource competition can provide evidence for NFDS and is useful 
in this regard (Fitzpatrick et al., 2007), and could also be extended 
to experimental evolution. Ideally, such studies would be performed 
in nature or under conditions that mimic natural conditions. In cases 

where allele frequency time-series data are available for POL loci, it 
is also possible to infer NFDS by fitting specific population-genetic 
models to data (e.g. Arnqvist et al.,  2016; Le Rouzic et al.,  2015; 
O'Hara, 2005).

3.3  |  POL loci and epistasis

Under the tenet that POL loci should show epistasis with unlinked 
loci which act to maintain genetic variation in these loci (Figure 1), 
we predict a negative genetic correlation in fitness across segre-
gating background genetic variation when co-expressed with al-
ternative POL loci variants. The logic here is that those alleles that 
yield high fitness with one POL locus variant should tend to show 
low fitness with the other, borrowing from the rationale used to 
demonstrate standing sexually antagonistic genetic variation (e.g. 
Chippindale et al., 2001; Connallon & Matthews, 2019). We know 
of no directly relevant data, but this could in principle be tested 
by expressing different POL locus genotypes in different genetic 
backgrounds (e.g. isogenic lines), although relative fitness must be 
assayed in a competitive environment with all POL locus variants 
present. Alternatively, data from natural populations could be used 
to assess sign epistasis for fitness between POL loci and other vari-
ants based on pedigree-data (Brommer et al., 2007).

3.4  |  Allele frequency spectra for LH genes

It is possible that analyses of population genomic data could add to 
our understanding of associative NFDS, but it is unclear how firm 
such inferences can be. For example, we would predict that many 
key LH genes should show a relatively even frequency spectrum of 
segregating sites. Yet, several confounding processes can generate 
such spectra (Bitarello et al., 2023; Fijarczyk & Babik, 2015) and, to 
further complicate matters, the polygenic nature of LH variation pre-
dicts substantial genetic redundancy. One strategy is to interrogate 
sets of genes showing hallmarks of balancing selection for functional 
enrichment. Efforts along these lines have revealed an enrichment 
of genes involved in the regulation of metabolic processes both in a 
few animals (Arnqvist & Sayadi, 2022; Croze et al., 2017) and plant 
pathogens (Castillo & Agathos, 2019). Another approach might be 
to ask whether genes likely affecting variation in POLS show allele 
frequency spectra different from those of other gene sets.

3.5  |  Modelling the effect of POL loci on 
epistatically interacting loci

We have argued that the maintenance of POL loci by NFDS will 
elevate variation in epistatically interacting LH genes. This infer-
ence is to a large part based on models of the impact of sexually 
antagonistic selection on the maintenance of variation (Connallon 
& Clark, 2012; Prout, 2000). Here, we are assuming the two sexes 
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are equivalent to two alternate alleles of a POL locus. We think this 
is reasonable, as both are persistent polymorphisms and both are 
expected to show epistasis with many other loci. However, they dif-
fer in one potentially important way that warrants further modelling. 
While sex is in theory maintained by NFDS, chromosomal sex deter-
mination fixes sex ratio at 1:1. Our argument with POL loci is that 
NFDS is actively maintaining intermediate frequencies of the poly-
morphism. Relative to chromosomally determined sex, it is possible 
that stronger selection in the POL locus may elevate the effect on 
maintenance of variation in epistatically interacting loci, and reduce 
the potential for drift. Modelling efforts aimed at characterizing the 
conditions under which the processes discussed here will elevate 
genetic variation in LH genes would be very valuable. Such models 
would preferably need to explore the effects of varying recombina-
tion rate, assortative mating and dominance reversal on the effects 
of associative NFDS.

3.6  |  Dominance reversal

Epistasis for fitness between a sex-determining locus and other 
loci is expected to result in sex-specific dominance reversal in the 
latter loci (Spencer & Priest,  2016) and this prediction has some 
empirical support (Barson et al., 2015; Grieshop & Arnqvist, 2018; 
Meiklejohn et al., 2014; Pearse et al., 2019). In fact, theory predicts 
that dominance reversals should evolve under a wide set of condi-
tions (Connallon & Chenoweth, 2019; Otto & Bourguet, 1999) and 
we suggest that POL phenotypes could be one. Under this hypoth-
esis, we predict that allelic dominance in LH loci would tend to be 
swapped between slow and fast POL genotypes.

3.7  |  Evolutionary strata in inversions

If inversion polymorphism is maintained by NFDS involving POL 
phenotypes, we predict that inversions could swell through stepwise 
extension to recruit adjacent LH loci, leading to sequential recombi-
nation suppression and the generation of evolutionary strata within 
inversions. This prediction is based on a number of assumptions and 
may not always apply, but a few studies in plants have indeed identi-
fied such strata (Huang & Rieseberg, 2020).

3.8  |  Seasonal clines in allele frequencies

As detailed above, to the extent that POL involves temporal traits 
such as timing of reproduction, we predict that selection and assor-
tative mating should generate a pattern of LD that could be detected 
as seasonal clines in allele frequencies in LH genes. It is interest-
ing to note that such clines seem quite common and characterizing 
the genes or genomic regions that make up these clines would likely 
help us understand the processes that generate them (Hendry & 
Day, 2005).

3.9  |  POL in sister taxa

We have argued that NFDS on major loci, and associated epistatic 
effects can maintain variation, which, in turn, may fuel adaptation 
and population differentiation. There is increasing evidence for ad-
aptation and speciation from standing genetic variation (Bomblies 
& Peichel, 2022; Schluter & Rieseberg, 2022). Whether processes 
we describe here results in polymorphism or contributes to branch-
ing and speciation will depend on a number of factors (Rueffler 
et al.,  2006). To the extent that it results in speciation, we would 
predict that closely related sister taxa would often (i) show dispro-
portionate divergence in key LH genes and (ii) show opposing POL 
phenotypes especially under sympatric or parapatric speciation.

4  |  CONCLUSIONS

The potential impacts of NFDS on the maintenance of variation are 
well known. Yet, we feel, this potential is currently worth increased 
attention and extension for a few reasons. Frequency dependency 
is clearly a very central process in the maintenance of ecological 
diversity (Chesson, 2000), suggesting that it is likely a central pro-
cess also in the maintenance of genetic diversity. Furthermore, be-
cause competition for limiting resources is clearly very widespread 
in nature (Gurevitch et al., 1992), the potential for density depend-
ence to generate NFDS involving LH traits may be near ubiquitous 
(Lewontin,  1974) and the processes discussed here significant for 
this reason alone. We have suggested that our quest to better under-
stand the processes that act to maintain genetic variation can profit 
from a closer conceptual integration of the processes that are known 
to act to maintain ecological diversity (Pelletier et al., 2009) and that 
such integration is promoted by a more inclusive definition of NFDS. 
In particular, we argue that NFDS on major effect genes should be an 
emergent property of disruptive selection on LH syndromes, mani-
fested as variation in POL phenotypes. Such NFDS may then con-
tribute to associative NFDS in many other loci that show epistasis 
with such major effect genes, resulting in the elevation of standing 
genetic variation in a large number of LH related genes. We note 
that while the tools that we typically use to better understand selec-
tion and adaptation using genomic data are well equipped to detect 
selective sweeps, they are ill-suited to assess the role of NFDS in 
maintaining LH variants. We suggest some lines of enquiry that we 
believe would help promote a closer and more fruitful integration of 
ecological processes and molecular genetics.
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