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Mixed Models Offer No Freedom from Degrees
of Freedom
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Statistical errors due topseudoreplication
are still very common in primary studies.

The use of linear mixed models to ana-
lyze data can ideally resolve such prob-
lems, but only if models are structured
correctly.

The use of linear mixed models can
instead generate such problems, if
Statistics matter greatly in biology, whether we like it or not. As a discipline with
an empirical inclination, we are faced with data every day and we rely on inferen-
tial statistical models to make sense of it and to provide us with novel insights.
Much of the time, the growing level of complexity and sophistication of the
models we put to use in ecology and evolution have led to more appropriate
analyses of our data. However, this is not always the case. Here, I draw attention
to a classic flaw in inferential statistics that has resurfaced in a new flavor as a re-
sult of increased reliance on complex linear mixedmodels – themultifaceted and
disturbingly persistent problem of pseudoreplication.
models are not appropriately structured.

Inappropriate use of linear mixed models
is very common in ecology and evolution,
and we need to strive toward a more
informed use of such models when
analyzing our data.
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The Problem of Pseudoreplication
WhenHurlbert [1] alerted us to the problem of pseudoreplication (see Glossary) in ecology back
in 1984, it was rampant and often obvious. He found that pseudoreplication occurred in about
half of all published studies that used inferential statistics to analyze field experiments. While
statistical errors due to pseudoreplication may possibly have decreased somewhat in frequency
among studies of that particular sort [2], this appears not to be the case in other domains of
biology where pseudoreplication is still very common and where its frequency is comparable to
that documented by Hurlbert back in 1984 (e.g., [3–9]).

Pseudoreplication (Box 1) can be defined as testing for effects with an error term inappropriate to
the hypothesis being considered [1] or, more generally, relating effects to inappropriate error
variances. It reflects the wider issues of determining what constitutes the appropriate level or
scale of independent replication for a given effect and occurs whenwe fail to account for dependen-
cies across observations that are assumed by our models to be independent. It often arises as a
result of a nested or hierarchical data structure and/or spatial or temporal dependencies of data.
Modeling hierarchical data by complex linear mixed models (LMMs) can be a remedy for inferen-
tial errors due to pseudoreplication (e.g., [10–13]). However, importantly, this will only ever be true if
appropriate models are fitted to data (e.g., [6,13–15]). If random effects structures are not
modeled correctly, then LMMs offer no antidote. In fact, the now widespread use of such models
seems to instead have aggravated the general problem of pseudoreplication in biology (Box 1).

The Issues at Hand
It may seem paradoxical that more sophisticated statistical modeling should be associated with
more problematic analyses. This concern stems from at least five circumstances.

First, fitting models with a correct random effect structure is often very difficult [6,13–15] and the
inner workings of complex LMMs are more or less obscure to many of us that put them to use
[10]. For example, many of us believe that simply including one or more main random effect
terms will miraculously account for dependencies in data and yield appropriate assessments of
all fixed effects and interaction terms. This is typically not the case in LMMs [6,15] (Box 1).
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Glossary
Cell mean: a cell in a design represents
a unique combination of levels of all fixed
and random factors, for example,
assaying condition number three in
population number seven in the example
in Box 2 (in which there are 30 cells). The
cell mean is simply the mean of all
replicate observations in that cell.
Degrees of freedom: the number of
values in the calculation of a metric that
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Because our understanding is often incomplete, the use of complex LMMs can bestow a decep-
tive air of authority upon unsound analyses.

Second, misspecification of the random effect structure leads to pseudoreplication and inappro-
priate deflation of P-values (and higher type I error rates). This overconfidence can stem from
inflated test statistics, for example, by F-ratios that are formed by incorrect denominator
mean squares, and also from improper degrees of freedom when test statistics are converted
to P-values. It is important to recognize that LMMs offer no magic freedom from degrees of
freedom and generally no mysterious dramatic elevation of statistical power [16].
are free to vary.
Fixed effect: a model parameter for
which the levels or values are assumed
to be fixed (i.e., constant). The actual
levels of a fixed effect factor are typically
set or determined by the experimenter
and fixed effects are estimated as, for
example, differences between group
means or as a slope.
Linear mixed model: a statistical
model that is linear in its structure,
wherein a focal response variable is
considered a function of several
variables and/or factors some of which
have fixed and others random effects.
Pseudoreplication: occurs when
analyzing data as if one had more
independent samples, observations, or
replicates than is actually the case.
Random effect: a model parameter
assumed to represent a random
variable. The actual levels of a random
effect factor are considered a random
subset of an infinite number of possible
levels and random effects are estimated
as variances or covariances.

Box 1. Pseudoreplication

Pseudoreplication occurs when we analyze our data as if we had more degrees of freedom than we actually do. Here, de-
grees of freedom can be thought of as the number of independent pieces of information available to us when estimating
another piece of information. The spirit of most statistical tests essentially involves relating an observed effect that we
are interested in to some appropriate measure of intrinsic, natural random variation and asking how likely it is that our ob-
servation is the result of chance. This is most obvious in F-tests, where F represents a ratio of explained variance to
unexplained variance or, alternatively, between-group variability to within-group variability.

Let us say that we havemeasured some response variable, say reproductive output (denoted Y in Figure I), in 20 individuals
in each of 10 different populations (total N = 200 individuals). Some populations are blue and some are orange,
representing, for example, an experimental treatment or an environmental dichotomy (color). To assess whether the 10
populations differ from one another (H0: μ1 = μ2 = … = μ10, where μ is the mean for that population), differences in
population means are evaluated over the within-population variance (σ2

w). This variance equals the error or sampling
variance, which is best estimated by all 200 individuals measured. Hence, the error degrees of freedomwill therefore reflect
the total number of individuals measured in all populations. The logic is intuitive: if we ask if populations differ at all, then
differences between populations should be related to variation within populations and all individuals measured provide
information on this important metric. Individuals are the appropriate level of independent replication.

If we instead ask whether there is an effect of color (H0: μ1–5 = μ6–10), then the difference between color groups should be
related to the among-population within-group variance (σ2

a). This variance then equals the error variance. Hence, the error
degrees of freedom should reflect the number of populations measured. Populations are the appropriate level of replica-
tion. The logic is again intuitive: if we ask whether blue and orange populations differ, then any differences between these
groups should be related to variation among populations within color. Relating it to variation across individuals within
populations represents a form of pseudoreplication.

These simple principles apply equally when evaluating data with complex LMMs, no matter how these models are fitted to
data and which inferential strategy is employed. In such models, color would be modeled as a fixed effect factor along with
other fixed effects and population identity (i.e., subject) is modeled as a random effects factor. Any test of effects of color
should be evaluated over variation among populations, not over variation among individuals.

Importantly, this also applies to interaction terms containing color. If we, for instance, ask whether the relationship between
Y and some factor or continuous variable X (say the relationship between reproductive output and body size) is different in
populations of different color (i.e., a X × color interaction), the number of independent observations of this relationship (top
two panels of plots in Figure I) equals the number of populations (i.e., 10) and not the number of individuals (i.e., 200). The
analysis and the error degrees of freedom should reflect this [6].

If the effect of color (whether main effects or interactions) would be evaluated over within- rather than among-population
variance, this can lead to deflated standards errors and confidence/credible intervals, inflated test statistics, inflated de-
grees of freedom for the error term, and consequently, to deflated P-values for fixed effects [6].

Unfortunately, pseudoreplication stemming from inappropriate error terms in mixedmodels is very common in ecology and
evolution [3–9]. For example, an inspection of all papers utilizing ‘experimental evolution’ and published in the Journal of
Evolutionary Biology during 2015–2019 (N = 40) revealed 11 cases of appropriate modeling, eight cases where the
analyses were at least partly inappropriate, and 21 cases where inferential models andmethods were not given in sufficient
detail to assess whether the analyses were appropriate (many of which were likely inappropriate).

Note that in the simple example above, ‘populations’ (i.e., subjects) does not necessarily have to represent 10 biological
populations made up by many individuals but could denote any hierarchical random effect factor, for example, 10
randomly selected individuals for which many measures of Y have been recorded.
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Figure I. A Schematic Illustration of Data from 10 Different Populations. Populations belong to either a blue or an
orange category, that differ in the mean value (μ) of some response variable Y that shows a common within-population
variance (σ2

w). Each category of five populations also shows a grand mean value (e.g., μ1–5) that shows a common
among-population variance (σ2

a). The 10 populations also differ in the manner in which a covariate (X) relates to the
response variable, as illustrated at the top.
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Third, due to the complexity of data and of the mixed models fitted, analytical methods
and strategies are often not transparent and are often not given in sufficient detail. This
can make it impossible for reviewers to assess whether appropriate inferential models
were used in primary research contributions and, thus, to help rectify problematic analyses
[5,6].

Fourth, assessing the potential gravity of pseudoreplication in LMMs has been made even
more difficult, or even impossible, as alternative strategies to model fitting and evaluation
have gained ground. Traditional tests of focal fixed effects in mixed models are done by
F-tests, which are transparent: they allow the direct assessment of whether an analysis
may suffer from pseudoreplication as both the effect (numerator) and the error (denominator)
degrees of freedom accompanies the F-ratio (Box 1). However, because data can be
unbalanced and/or error distributions not normal, we often and rightly turn to alternative
model fitting strategies which rely on test statistics (e.g., log-likelihood ratios) that lack trans-
parency: they offer no information on the level at which data are regarded as being indepen-
dently replicated. Again, this can make it impossible to assess how appropriate a given
analysis is.
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Fifth, pseudoreplication is sometimes believed to be a problem that emerges only when we
engage in explicit null hypothesis testing, and that inferences based on parameter estimates
and their confidence intervals (or the Bayesian equivalent, credible intervals) are somehow
immune to these issues. They are not. Here, a misspecification of the random effects structure
can generate inferential overconfidence by inappropriate shrinkage of the inferential intervals.
The models employed in such analyses are often complex and opaque, especially in Bayesian
model fitting strategies. It can be difficult or even impossible to work out at what level of replication
inferential intervals were estimated. Yet, an appropriate random effect structure is as essential
here as it is when engaging in more traditional model fitting and hypothesis testing strategies [15].

Some Simple and Concrete Advice
1. Explicitly state your inferential model in the paper or, at the very least, in supplementary infor-

mation. This is often best done in tables, presenting estimates of all estimated parameters in
the model (random and fixed) accompanied by the tests or confidence intervals that you rely
upon, but can also include scripts detailing fitted models. This is required for transparency in
the primary literature [17].

2. Whenever possible, present or at the very least inspect approximate F-ratios and their associ-
ated numerator and denominator degrees of freedom evenwhen you lean on other test metrics
(e.g., χ2 or confidence intervals) for your final and main inferences. When using generalized
LMMs [18], compare the results with analogous conventional LMMs that can be evaluated
by F-tests. This can serve as a sanity check: it allows you to assess whether the error degrees
Box 2. An Example

We can use a relatively simple hypothetical data set to illustrate that data can be modeled in a number of different ways and
that choice of inferential model can matter. We have collected data on Y from 10 different populations (POP), of which five
belong to one treatment/sort and five to another. From each population, we also have data of three different types
(e.g., assaying conditions) and we have data for 20 individuals of each type in each population. We thus have in total 10 ×
3 × 20 = 600 observations of Y. However, these 600 observations are clearly not independent and replication here should
reflect the number of populations (i.e., subjects) involved. We are interested in the fixed effects of our treatment (T), of the
effects of assaying condition (AC), and of whether treatment effects might differ across assaying condition (T × AC; Table I).

A: All terms are here modeled as fixed effects, as if all 600 observations were independent.
B: An LMM including the random effect of POP, but where POP has not been appropriately nested within T.
C.1: An LMM including the random effect of POP, where POP has been nested within T. This is equivalent to a ‘ran-
dom intercepts’model. Here, mean Y is assumed to only vary in magnitude across populations within T, in the same
concerted manner for all three levels of AC. Note that the effects of AC and T × AC are here evaluated over individuals
rather than over populations, which is evident from the denominator degrees of freedom.
C.2: The same model structure as in C.1, but instead evaluated using Wald χ2 tests.
D.1: An LMM instead including two random effect components: POP within T and the interaction between AC and
POP within T. This essentially allows the overall effect of AC to vary across populations. This is in spirit a simple ‘ran-
dom slopes’ model.
D.2: A model with the same structure as in D.1, but instead evaluated using Wald χ2 tests.
E: A repeated measures ANOVA of cell means (10 × 3 = 30 observations), regarding POP as random effects subjects.
These types of models yield appropriate tests of fixed effects, but cannot be used when some cells in the design are
empty or when the within-subjects variable of interest is a covariate (rather than a factorial variable, as AC is here).
F: An LMM including six explicit random effect components; each of the three AC levels separately as well as the co-
variance between them. This represents what could be called a full ‘random slopes’ model, as it allows the shape of
the effect of AC to vary across populations within T.

As is illustrated by this simple hypothetical example, what models we fit to data and how we choose to evaluate them can
affect the conclusion we draw [6,9,15]. In the current example, models D.1, E, and F can all be considered appropriate.
Models of the type represented by C.1 and C.2 are inappropriate but are common in ecology and evolution.

Note that if each observation is associated with a value of a covariate X, rather than a level of a factor as in this example
(i.e., AC), then additional efforts may be needed to separate the effects of the covariate within each subject from those
across subjects [14]. Data and examples scripts are available as Supplementary Information.

332 Trends in Ecology & Evolution, April 2020, Vol. 35, No. 4



Table I. Different Models Fitted to the Example Data Set.

Model Effect Numerator
degrees of
freedom (ndf)

Denominator
degrees of
freedom (ddf)

F P Wald
χ2

P

A T 1 594 5.27 0.022

AC 2 594 2.57 0.077

T × AC 2 594 3.40 0.034

B T 1 586 5.05 0.025

AC 2 586 2.57 0.077

T × AC 2 586 3.40 0.034

C.1 T 1 8 5.05 0.055

AC 2 586 2.57 0.077

T × AC 2 586 3.40 0.034

C.2 T 1 5.05 0.025

AC 2 5.15 0.076

T × AC 2 6.80 0.033

D.1 T 1 8 5.05 0.055

AC 2 16 1.64 0.226

T × AC 2 16 2.16 0.148

D.2 T 1 5.05 0.025

AC 2 3.27 0.195

T × AC 2 4.32 0.115

E Between subjects

T 1 8 5.05 0.055

Within subjects

AC 2 16 1.64 0.226

T × AC 2 16 2.16 0.148

F T 1 8 2.77 0.135

AC 2 7 1.76 0.240

T × AC 2 7 1.53 0.280
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of freedom (reflecting replication) and the estimated effects in your inferential model are reason-
able for all terms. For example, some χ2-based tests such as Wald tests can sometimes pro-
vide unreasonable evaluations of LMMs (Box 2).

3. As another sobering exercise, evaluate your data also using much simpler models of group
means. This could involve anything from simple t-tests to partly nested mixed models of cell
means [e.g., repeated measures analysis of variances (ANOVAs)]. If you find much larger or
more significant fixed effects in your complex LMM than in the simpler tests, you have likely
not modeled the random effects structure in an appropriate manner [6]. Be wary.

4. When you are interested in modeling interactions between fixed effects that apply within and be-
tween your random subjects, then include randomparameters that allow the within-subjects effect
to vary in shape across subjects (i.e., fit random slopesmodels). This is typically done by estimating
several variance and covariance components. This allows intercepts and ‘slopes’ to differ, and
even to covary, across levels of your random factor (e.g., populations) and it results in appropriate
confidence intervals, error variances, and degrees of freedom for fixed effects [15]. Failure to allow
within-subjects effects to vary across subjects is a particularly common problem in our domain [6].
logy & Evolution, April 2020, Vol. 35, No. 4 333
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5. Do not perform model simplification or reduction of random terms prior to arriving at your infer-
ential model, where nonsignificant effects (including random interactions) that reflect levels of
replication or design in your data are removed. This is because dropping random terms can
greatly affect tests of fixed effects in a manner resulting in pseudoreplication [6]. Trust the full
model – the random effects structure should be determined by your design rather than by
your data [15]. Note that random effects (i.e., variances or covariances) that are inestimable
or are negative are sometimes dropped automatically when fitting models, which can result
in pseudoreplication.

6. Use restrictedmaximum likelihood (REML) estimation rather thanmaximum likelihood to fit your
model, as REML yields unbiased estimates under a wider range of conditions. This is important
if your data are imbalanced.

7. If your design is factorial, consider instead analyzing cell means using a repeated measures
ANOVA (i.e., a partly nested mixed model). This is only possible if there are no empty cells in
your data, but it is more likely to yield analyses with appropriate structure and degrees of
freedom.

8. Strive to have a reasonable number of levels (at the very least, say, four to five subjects) of your
random effects within each group (i.e., five populations in Box 1). Although there is some con-
troversy surrounding this issue and how it affects estimates of fixed effects, random effects are
modeled as a variance in mixed modeling and estimating a variance parameter accurately
based on very few observations (i.e., subjects) is certainly problematic [19,20]. If you estimate
several random effects in your model, this potential problem is aggravated.

Concluding Remarks
It is clear that overconfidence and type I statistical errors are common in LMMs of data in our
domain, as a result of pseudoreplication. Complex inferential models and model fitting strategies
are sometimes very useful, as they potentially allow us tomodel our datamore appropriately when
data are problematic [13,17]. However, many of us frequently err. We therefore also need to fully
acknowledge that more complex models place much higher demands on our statistical
proficiency and we should take precautionary steps to ensure a more informed use of LMMs.
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